Skip to main content
Log in

Well-conditioning global–local analysis using stable generalized/extended finite element method for linear elastic fracture mechanics

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Using the locally-enriched strategy to enrich a small/local part of the problem by generalized/extended finite element method (G/XFEM) leads to non-optimal convergence rate and ill-conditioning system of equations due to presence of blending elements. The local enrichment can be chosen from polynomial, singular, branch or numerical types. The so-called stable version of G/XFEM method provides a well-conditioning approach when only singular functions are used in the blending elements. This paper combines numeric enrichment functions obtained from global–local G/XFEM method with the polynomial enrichment along with a well-conditioning approach, stable G/XFEM, in order to show the robustness and effectiveness of the approach. In global–local G/XFEM, the enrichment functions are constructed numerically from the solution of a local problem. Furthermore, several enrichment strategies are adopted along with the global–local enrichment. The results obtained with these enrichments strategies are discussed in detail, considering convergence rate in strain energy, growth rate of condition number, and computational processing. Numerical experiments show that using geometrical enrichment along with stable G/XFEM for global–local strategy improves the convergence rate and the conditioning of the problem. In addition, results shows that using polynomial enrichment for global problem simultaneously with global–local enrichments lead to ill-conditioned system matrices and bad convergence rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Agathos K, Chatzi E, Bordas SP (2016) Stable 3d extended finite elements with higher order enrichment for accurate non planar fracture. Comput Methods Appl Mech Eng 306:19–46

    Article  MathSciNet  Google Scholar 

  2. Alves PD, Barros FB, Pitangueira RLS (2013) An object oriented approach to the generalized finite element method. Adv Eng Softw 59:1–18

    Article  Google Scholar 

  3. Babuska I, Banerjee U (2011) Stable generalized finite element method (sgfem). Tech. rep., Technical Report ICES REPORT 11-07. The Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA

  4. Babuska I, Banerjee U (2012) Stable generalized finite element method (SGFEM). Comput Methods Appl Mech Eng 201–204:91–111

    Article  MathSciNet  MATH  Google Scholar 

  5. Barros FB, Proença SPB, de Barcellos CS (2004) On error estimator and p-adaptivity in the generalized finite element method. Int J Numer Methods Eng 60(14):2373–2398

    Article  MATH  Google Scholar 

  6. Barros FB, de Barcellos CS, Duarte CA, Torres DF (2013) Subdomain-based error techniques for generalized finite element approximations of problems with singular stress fields. Comput Mech 52:1395–1415

    Article  MathSciNet  MATH  Google Scholar 

  7. Béchet E, Minnebo H, Moës N, Burgardt B (2005) Improved implementation and robustness study of the X-FEM for stress analysis around cracks. Int J Numer Methods Eng 64:1033–1056

    Article  MATH  Google Scholar 

  8. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45:601–620

    Article  MathSciNet  MATH  Google Scholar 

  9. Cai Y, Zhuang X, Augarde C (2010) A new partition of unity finite element free from the linear dependence problem and possessing the delta property. Comput Methods Appl Mech Eng 199(17–20):1036–1043

    Article  MathSciNet  MATH  Google Scholar 

  10. Chessa J, Wang H, Belytschko T (2003) On the construction of blending elements for local partition of unity enriched finite elements. Int J Numer Methods Eng 57:1015–1038

    Article  MATH  Google Scholar 

  11. Cook RD, Malkus DS, Plesha ME, Witt RJ (2002) Concepts and applications of finite element analysis. Wiley, New York

    Google Scholar 

  12. Duarte CA, Babuška IM (2005) A global-local approach for the construction of enrich. func. for the GFEM and its application to propagating three-dimensional cracks. Tech. rep., ECCOMAS Thematic Conference on Meshless Methods

  13. Duarte CA, Kim DJ (2008) Analysis and applications of a generalized finite element method with global-local enrichment functions. Comput Methods Appl Mech Eng 197:487–504

    Article  MathSciNet  MATH  Google Scholar 

  14. Duarte CA, Oden JT (1995) Hp clouds—a meshless method to solve boundary-value problem. Tech. rep., TICAM. The University of Texas at Austin, technical Report

  15. Duarte CA, Babuska I, Oden JT (2000) Generalized finite element methods for three-dimensional structural mechanics problems. Comput Struct 77(2):215–232

    Article  MathSciNet  Google Scholar 

  16. Duarte CA, Kim DJ, Babuška I (2007) A global-local approach for the construction of enrichment functions for the generalized fem and its application to three-dimensional cracks. In: Leitão VMA, Alves CJS, Duarte CA (eds) Advances in meshfree techniques. pp 1–26

  17. Fries TP (2008) A corrected XFEM approximation without problems in blending elements. Int J Numer Methods Eng 75(5):503–532

    Article  MathSciNet  MATH  Google Scholar 

  18. Fries TP, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84(3):253–304

    MathSciNet  MATH  Google Scholar 

  19. Gracie R, Wang H, Belytschko T (2008) Blending in the extended finite element method by discontinuous galerkin and assumed strain methods. Int J Numer Methods Eng 74:1645–1669

    Article  MathSciNet  MATH  Google Scholar 

  20. Gupta V (2014) Improved conditioning and accuracy of a two-scale generalized finite element method for fracture mechanics. PhD thesis, University of Illinois at Urbana-Champaign

  21. Gupta V, Duarte CA, Babuska I, Banerjee U (2013) A stable and optimally convergent generalized FEM (SGFEM) for linear elastic fracture mechanics. Comput Methods Appl Mech Eng 266:23–39

    Article  MathSciNet  MATH  Google Scholar 

  22. Gupta V, Duarte CA, Babuska I, Banerjee U (2015) Stable GFEM (SGFEM): improved conditioning and accuracy of GFEM/XFEM for three-dimensional fracture mechanics. Comput Methods Appl Mech Eng 289:355–386

    Article  MathSciNet  Google Scholar 

  23. Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover, New York

    MATH  Google Scholar 

  24. Kim DJ, Pereira JP, Duarte CA (2010) Analysis of three-dimensional fracture mechanics problems: a two-scale approach using coarse-generalized FEM meshes. Int J Numer Methods Eng 81:335–365

    MATH  Google Scholar 

  25. Laborde P, Renard JPY, Salaün M (2005) High-order extended finite element method for cracked domains. Int J Numer Methods Eng 64:354–381

    Article  MATH  Google Scholar 

  26. Loehnert S (2014) A stabilization technique for the regularization of nearly singular extended finite elements. Comput Mech 54:523–533

    Article  MathSciNet  MATH  Google Scholar 

  27. Malekan M, Barros FB, Pitangueira RLS, Alves PD (2016a) An object-oriented class organization for global-local generalized finite element method. Lat Am J Solids Struct (accepted for publication)

  28. Malekan M, Barros FB, Pitangueira RLS, Alves PD, Penna SS (2016b) A computational framework for a two-scale generalized/extended finite element method: generic imposition of boundary conditions. Eng Comput (Under review)

  29. Melenk JM, Babuska I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 39:289–314

    Article  MathSciNet  MATH  Google Scholar 

  30. Menk A, Bordas SPA (2011) A robust preconditioning technique for the extended finite element method. Int J Numer Methods Eng 85:1609–1632

    Article  MathSciNet  MATH  Google Scholar 

  31. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150

    Article  MATH  Google Scholar 

  32. Natarajan S, Song C (2013) Representation of singular fields without asymptotic enrichment in the extended finite element method. Int J Numer Methods Eng 96:813–841

    Article  MathSciNet  Google Scholar 

  33. Noor AK (1986) Global-local methodologies and their application to nonlinear analysis. Finite Elem Anal Des 2:333–346

    Article  Google Scholar 

  34. Oden JT, Duarte CA, Zienkiewicz OC (1998) A new cloud-based HP finite element method. Comput Methods Appl Mech Eng 153:117–126

    Article  MathSciNet  MATH  Google Scholar 

  35. Rojas-Díaz R, Sukumar N, Sáez A, García-Sánchez F (2011) Fracture in magnetoelectroelastic materials using the extended finite element method. Int J Numer Methods Eng 88(12):1238–1259

    Article  MathSciNet  MATH  Google Scholar 

  36. Shibanuma K, Utsunomiya T (2009) Reformulation of XFEM based on PUFEM for solving problem caused by blending elements. Finite Elem Anal Des 45(11):806–816

    Article  MathSciNet  Google Scholar 

  37. Shibanuma K, Utsunomiya T, Aihara S (2014) An explicit application of partition of unity approach to XFEM approximation for precise reproduction of a priori knowledge of solution. Int J Numer Methods Eng 97:551–581

    Article  MathSciNet  Google Scholar 

  38. Sillem A, Simone A, Sluys LJ (2015) The orthonormalized generalized finite element method–OGFEM: efficient and stable reduction of approximation errors through multiple orthonormalized enriched basis functions. Comput Methods Appl Mech Eng 287:112–149

    Article  MathSciNet  Google Scholar 

  39. Strouboulis T, Babuska I, Copps K (2000a) The design and analysis of the generalized finite element method. Comput Methods Appl Mech Eng 181(1–3):43–69

  40. Strouboulis T, Copps K, Babuska I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. Int J Numer Methods Eng 47:1401–1417

    Article  MathSciNet  MATH  Google Scholar 

  41. Strouboulis T, Copps K, Babuska I (2001) The generalized finite element method. Comput Methods Appl Mech Eng 190:4081–4193

    Article  MathSciNet  MATH  Google Scholar 

  42. Szabó B, Babuska I (1991) Finite element analysis. Wiley, New York

    MATH  Google Scholar 

  43. Tarancón JE, Vercher A, Giner E, Fuenmayor FJ (2009) Enhanced blending elements for XFEM applied to linear elastic fracture mechanics. Int J Numer Methods Eng 77:126–148

    Article  MathSciNet  MATH  Google Scholar 

  44. Tian R (2013) Extra-dof-free and linearly independent enrichments in GFEM. Comput Methods Appl Mech Eng 266:1–22

    Article  MATH  Google Scholar 

  45. Tian R, Wen L (2015) Improved XFEM-an extra-dof free, well-conditioning, and interpolating XFEM. Comput Methods Appl Mech Eng 285:639–658

    Article  MathSciNet  Google Scholar 

  46. Torresa DF, de Barcellos C, Mendonça PR (2015) Effects of the smoothness of partitions of unity on the quality of representation of singular enrichments for gfem/xfem stress approximations around brittle cracks. Comput Methods Appl Mech Eng 283:243–279

    Article  MathSciNet  Google Scholar 

  47. Wen L, Tian R (2016) Improved XFEM: accurate and robust dynamic crack growth simulation. Comput Methods Appl Mech Eng 308:256–285

    Article  MathSciNet  Google Scholar 

  48. Wu JY, Li FB (2015) An improved stable XFEM (is-XFEM) with a novel enrichment function for the computational modeling of cohesive cracks. Comput Methods Appl Mech Eng 295:77–107

    Article  MathSciNet  Google Scholar 

  49. Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method, 6th edn. Elsevier, Burlington

    Google Scholar 

Download references

Acknowledgments

The authors wish to express their sincere appreciation to Prof. C.A. Duarte for his constructive comments on the numerical results. The authors also gratefully acknowledge the important support of the Brazilian research agencies CNPq (National Council for Scientific and Technological Developments - Grants 486959/2013-9 and 309005/2013-2) and CAPES (Coordination for the Improvement of Higher Education Personnel).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felicio Bruzzi Barros.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malekan, M., Barros, F.B. Well-conditioning global–local analysis using stable generalized/extended finite element method for linear elastic fracture mechanics. Comput Mech 58, 819–831 (2016). https://doi.org/10.1007/s00466-016-1318-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-016-1318-7

Keywords

Navigation