Skip to main content
Log in

The finite cell method for polygonal meshes: poly-FCM

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In the current article, we extend the two-dimensional version of the finite cell method (FCM), which has so far only been used for structured quadrilateral meshes, to unstructured polygonal discretizations. Therefore, the adaptive quadtree-based numerical integration technique is reformulated and the notion of generalized barycentric coordinates is introduced. We show that the resulting polygonal (poly-)FCM approach retains the optimal rates of convergence if and only if the geometry of the structure is adequately resolved. The main advantage of the proposed method is that it inherits the ability of polygonal finite elements for local mesh refinement and for the construction of transition elements (e.g. conforming quadtree meshes without hanging nodes). These properties along with the performance of the poly-FCM are illustrated by means of several benchmark problems for both static and dynamic cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

References

  1. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward Integration of CAD and FEA. Wiley, Chichester

    Book  Google Scholar 

  2. Balafas G (2014) Polyhedral mesh generation for CFD-analysis of complex structures. Master’s Thesis, Technical University Munich

  3. Sukumar N, Malsch EA (2006) Recent advances in the construction of polygonal finite element interpolants. Arch Comput Methods Eng 13:129–163

    Article  MathSciNet  MATH  Google Scholar 

  4. Milbradt P, Pick T (2008) Polytope finite elements. Int J Numer Methods Eng 73:1811–1835

    Article  MathSciNet  MATH  Google Scholar 

  5. Chiong I, Ooi ET, Song C, Tin-Loi F (2014) Scaled boundary polygons with applications to fracture analysis of functionally graded materials. Int J Numer Methods Eng 98:562–589

    Article  MathSciNet  Google Scholar 

  6. Chi H, Talischi C, Lopez-Pamies O, Paulino GH (2015) Polygonal finite elements for finite elasticity. Int J Numer Methods Eng 101:305–328

    Article  MathSciNet  Google Scholar 

  7. Filipov ET, Chun J, Paulino GH, Song J (2016) Polygonal multiresolution topology optimization (PolyMTOP) for structural dynamics. Struct Multidiscip Optim 53(4):673–694

  8. Talischi C, Paulino GH (2014) Addressing integration error for polygonal finite elements through polynomial projections: a patch test connection. Math Models Methods Appl Sci 24:1701–1727

    Article  MathSciNet  MATH  Google Scholar 

  9. Sukumar N, Tabarraei A (2014) Polygonal interpolants: construction and adaptive computations on quadtree meshes. In: Neittaanmäki P, Rossi T, Korotov S, Oñate E, Périaux J, Knörzer D (eds) Proceedings of the European congress on computational methods in applied sciences and engineering (ECCOMAS). University of Jyväskylä, Jyvaskyla

    Google Scholar 

  10. Tabarraei A, Sukumar N (2005) Adaptive computations on conforming quadtree meshes. Finite Elem Anal Des 41:686–702

    Article  Google Scholar 

  11. Tabarraei A, Sukumar N (2008) Extended finite element method onpolygonal and quadtree meshes. Comput Methods Appl Mech Eng 197:425–438

    Article  MathSciNet  MATH  Google Scholar 

  12. Sukumar N, Tabarraei A (2004) Conforming polygonal finite elements. Int J Numer Methods Eng 61:2045–2066

    Article  MathSciNet  MATH  Google Scholar 

  13. Mukherjee T, Webb JP (2015) Hierarchical bases for polygonal finite elements. IEEE Trans Magn 51:1–4

    Article  Google Scholar 

  14. Wachspress E (1975) A rational finite element basis. Academic Press, New York

    MATH  Google Scholar 

  15. Bishop JE (2014) A displacement-based finite element formulation for general polyhedra using harmonic shape functions. Int J Numer Methods Eng 97:1–31

    Article  MathSciNet  Google Scholar 

  16. Aurenhammer F, Klein R (1999) Voronoi diagrams. Tech. Rep. Technical University of Graz & FernUniversität Hagen

  17. Sieger D, Alliez P, Botsch M (2010) Optimizing Voronoi diagrams for polygonal finite element computations. In: Proceedings of the 19th international meshing roundtable

  18. Ebeida MS, Mitchell SA (2012) Uniform random Voronoi meshes. In: Proceedings of the 20th international meshing roundtable, pp 273–290

  19. Ebeida MS, Mitchell SA, Patney A, Davidson AA, Owens JD (2012) A simple algorithm for maximal Poisson-disk sampling inhigh dimensions. Comput Graph Forum 31:785–794

    Article  Google Scholar 

  20. Talischi C, Paulino GH, Pereira A, Menezes IFM (2012) PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct Multidiscip Optim 45:309–328

    Article  MathSciNet  MATH  Google Scholar 

  21. Hateley JC, Wei H, Cheng L (2015) Fast methods for computing centroidal Voronoi tessellations. J Sci Comput 63:185–212

    Article  MathSciNet  MATH  Google Scholar 

  22. Kraus M, Rajagopal A, Steinmann P (2013) Investigations on the polygonal finite element method: constrained adaptive Delaunay tessellation and conformal interpolants. Comput Struct 120:33–46

    Article  Google Scholar 

  23. Tabarraei A, Sukumar N (2006) Application of polygonal finite elements in linear elasticity. Int J Comput Methods 3:503–520

    Article  MathSciNet  MATH  Google Scholar 

  24. Biabanaki SOR, Khoei AR (2012) A polygonal finite element method for modeling arbitrary interfaces in large deformation problems. Comput Mech 50:19–33

    Article  MathSciNet  MATH  Google Scholar 

  25. Biabanaki SOR, Khoei AR, Wriggers P (2014) Polygonal finite element methods for contact-impact problems on non-conformal meshes. Comput Methods Appl Mech Eng 269:198–221

    Article  MathSciNet  MATH  Google Scholar 

  26. Leon SE, Spring DW, Paulino GH (2014) Reduction in mesh bias for dynamic fracture using adaptive splitting of polygonal finite elements. Int J Numer Methods Eng 100:555–576

    Article  MathSciNet  Google Scholar 

  27. Khoei AR, Yasbolaghi R, Biabanaki SOR (2015) A polygonal-FEM technique in modeling large sliding contact on non-conformal meshes: a study on polygonal shape functions. Eng Comput 32:1391–1431

    Article  Google Scholar 

  28. Talischi C, Paulino GH, Le CH (2009) Honeycomb Wachspress finite elements for structural topology optimization. Struct Multidiscip Optim 37:569–583

    Article  MathSciNet  MATH  Google Scholar 

  29. Talischi C, Paulino GK, Pereira A, Menezes IFM (2010) Polygonal finite elements for topology optimization: a unifying paradigm. Int J Numer Methods Eng 82:671–698

    MATH  Google Scholar 

  30. Talischi C, Paulino GH, Pereira A, Menezes IFM (2012) PolyTop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes. Struct Multidiscip Optim 45:329–357

    Article  MathSciNet  MATH  Google Scholar 

  31. Duarte LS, Celes W, Pereira A, Menezes IFM, Paulino GH (2015) PolyTop++: an efficient alternative for serial and parallel topology optimization on CPUs & GPUs. Struct Multidiscip Optim (online), 1–15

  32. Sukumar N, Bolander JE (2009) Sukumar N, Bolander JE (2009) Voronoi-based interpolants for fracture modelling. In: Tessellations in the sciences: virtues, techniques and applications of geometric tiling. Springer, Berlin, p 27

  33. Spring DW, Leon SE, Paulino GH (2014) Unstructured polygonal meshes with adaptive refinement for the numerical simualtion of dynamic cohesive fracture. Int J Fract 189:33–57

    Article  Google Scholar 

  34. Talischi C, Pereira A, Paulino GH, Menezes IFM, Carvalho MS (2014) Polygonal finite elements for incompressible fluid flow. Int J Numer Methods Fluids 74:134–151

    Article  MathSciNet  Google Scholar 

  35. Peskin CS (2002) The immersed boundary method. Acta Numer 11:479–517

    Article  MathSciNet  MATH  Google Scholar 

  36. Parvizian J, Düster A, Rank E (2007) Finite cell method: h- and p-extension for embedded domain problems in solid mechanics. Comput Mech 41:121–133

    Article  MathSciNet  MATH  Google Scholar 

  37. Düster A, Parvizian J, Yang Z, Rank E (2008) The finite cell method for three-dimensional problems of solid mechanics. Comput Methods Appl Mech Eng 197:3768–3782

    Article  MathSciNet  MATH  Google Scholar 

  38. Szabó B, Babuška I (1991) Finite element analysis. Wiley, New York

    MATH  Google Scholar 

  39. Düster A (2002) High order finite elements for three-dimensional, thin-walled nonlinear continua. PhD Thesis, Technical University Munich

  40. Demkowicz L (2006) Computing with hp-adaptive finite elements: vol 1: one and two dimensional elliptic and Maxwell problems. Chapman and Hall, Boca Raton

  41. Demkowicz L, Kurtz J, Pardo D, Paszynski M, Rachowicz W, Zdunek A (2008) Computing with hp-adaptive finite elements: vol 2, frontiers: three dimensional elliptic and Maxwell problems with applications. Chapman and Hall, Boca Raton

  42. Szabó B, Babuška I (2011) Introduction to finite element analysis: formulation, verification and validation. Wiley, New York

    Book  MATH  Google Scholar 

  43. Duczek S (2014) Higher order finite elements and the fictitious domain concept for wave propagation analysis. VDI Fortschritt-Berichte Reihe 20 No. 458

  44. Dauge M, Düster A, Rank E (2015) Theoretical and numerical investigation of the finite cell method. J Sci Comput 65:1039–1064

    Article  MathSciNet  MATH  Google Scholar 

  45. Rank E, Düster A, Schillinger D, Yang Z (2009) The finite cell method: high order simulation of complex structures without meshing. Computational structural engineering. Springer, Berlin, pp 87–92

    Chapter  Google Scholar 

  46. Yang Z (2011) The finite cell method for geometry-based structural simulation. PhD Thesis, Technical University Munich

  47. Yang Z, Kollmannsberger S, Düster A, Ruess M, Grande Garcia E, Burgkart R, Rank E (2011) Non-standard bone simulation: interactive numerical analysis by computational steering. Comput Vis Sci 14:207–216

    Article  MathSciNet  Google Scholar 

  48. Yang Z, Ruess M, Kollmannsberger S, Düster A, Rank E (2012) An efficient integration technique for the voxel-based finite cell method. Int J Numer Methods Eng 91:457–471

    Article  Google Scholar 

  49. Sehlhorst H-G, Jänicke R, Düster A, Rank E, Steeb H, Diebels S (2009) Numerical investigations of foam-like materials by nested high-order finite element methods. Comput Mech 45:45–59

    Article  MATH  Google Scholar 

  50. Sehlhorst H-G (2011) Numerical homogenization startegies for cellular materials with applications in structural mechanics. PhD Thesis, Hamburg Uneversity of Technology

  51. Heinze S, Joulaian M, Düster A (2015) Numerical homogenization of hybrid metal foams using the finite cell method. Comput Math Appl 70:1501–1517

    Article  MathSciNet  Google Scholar 

  52. Schillinger D, Kollmannsberger S, Mundani R-P, Rank E (2010) The finite cell method for geometrically nonlinear problems of solid mechanics. In: IOP conference series: materials science and engineering, vol 10

  53. Schillinger D, Düster A, Rank E (2012) The hp-d-adaptive finite cell method for geometrically nonlinear problems of solid mechanics. Int J Numer Methods Eng 89:1171–1202

    Article  MathSciNet  MATH  Google Scholar 

  54. Schillinger D (2012) The p- and B-spline versions of the geometrically nonlinear finite cell method and hierarchical refinement strategies for adaptive isogeometric and embedded domain analysis. PhD Thesis, Technical University Munich

  55. Abedian A, Parvizian J, Düster A, Rank E (2013) The finite cell method for the \(J_2\) flow theory of plasticity. Finite Elem Anal Des 69:37–47

    Article  Google Scholar 

  56. Abedian A, Parvizian J, Düster A, Rank E (2014) The FCM compared to the h-version FEM for elasto-plastic problems. Appl Math Mech 35:1239–1248

    Article  Google Scholar 

  57. Ranjbar M, Mashayekhi M, Parvizian J, Düster A, Rank E (2014) Using the finite cell method to predict crack initiation in ductile materials. Comput Mater Sci 82:427–434

    Article  Google Scholar 

  58. Parvizian J, Düster A, Rank E (2012) Topology optimization using the finite cell method. Optim Eng 13:57–78

    Article  MathSciNet  MATH  Google Scholar 

  59. Joulaian M, Düster A (2013) Local enrichment of the finite cell method for problems with material interfaces. Comput Mech 52:741–762

    Article  MATH  Google Scholar 

  60. Zander N, Kollmannsberger S, Ruess M, Yosibash Z, Rank E (2012) The finite cell method for linear thermoelasticity. Comput Math Appl 64:3527–3541

    Article  MathSciNet  MATH  Google Scholar 

  61. Duczek S, Liefold S, Gabbert U (2015) The finite and spectral cell methods for smart structure applications: transient analysis. Acta Mech 226:845–869

    Article  MathSciNet  MATH  Google Scholar 

  62. Duczek S, Joulaian M, Düster A, Gabbert U (2013) Simulation of Lamb waves using the spectral cell method. In: Proceedings of SPIE smart structures/NDE, vol 8695

  63. Joulaian M, Duczek S, Gabbert U, Düster A (2014) Finite and spectral cell method for wave propagation in heterogeneous materials. Comput Mech 54:661–675

    Article  MathSciNet  MATH  Google Scholar 

  64. Ostachowicz W, Kudela P, Krawczuk M, Żak A (2011) Guided waves in structures for SHM: the time-domain spectral element method. Wiley, New York

    MATH  Google Scholar 

  65. Patera AT (1984) A spectral element method for fluid dynamics: laminar flow in a channel expansion. J Comput Phys 54:468–488

    Article  MATH  Google Scholar 

  66. Komatitsch D, Vilotte JP, Vai R, Castillo-Covarrubias JM, Sánchez-Sesma FJ (1999) The spectral element method for elastic wave equations—application to 2-D and 3-D seismic problems. Int J Numer Methods Eng 45:1139–1164

    Article  MATH  Google Scholar 

  67. Komatitsch D, Tromp J (1999) Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophys J Int 139:806–822

    Article  Google Scholar 

  68. Duczek S, Joulaian M, Düster A, Gabbert U (2014) Numerical analysis of Lamb waves using the finite and spectral cell methods. Int J Numer Methods Eng 99:26–53

    Article  MathSciNet  MATH  Google Scholar 

  69. Schillinger D, Cai Q, Mundani R-P, Rank E (2013) A review of the finite cell method for nonlinear structural analysis of complex CAD and image-based geometric models. In: Advanced computing. Lecture notes in computational science and engineering, vol 93. Springer, New York, pp 1–23

  70. Schillinger D, Ruess M (2014) The finite cell method: a review in the context of high-order structural analysis of CAD and image-based geometric models. Arch Comput Methods Eng 22(3):391–455

    Article  MathSciNet  Google Scholar 

  71. Hughes TJR (1987) The finite element method: linear static and dynamic finite element analysis. Prentice-Hall, Englewood Cliff

    MATH  Google Scholar 

  72. Fish J, Belytschko T (2007) A first course in finite elements. Wiley, New York

    Book  MATH  Google Scholar 

  73. Zienkiewicz OC, Taylor RL (2000) The finite element method: vol 1: the basis. Butterworth Heinemann, Oxford

  74. Ramière I, Angot P, Belliard M (2007) A fictitious domain approach with spread interface for elliptic problems with general boundary conditions. Comput Methods Appl Mech Eng 196:766–781

    Article  MathSciNet  MATH  Google Scholar 

  75. Ramière I, Angot P, Belliard M (2007) A general fictitious domain method with immersed jumps and multilevel nested structured meshes. J Comput Phys 225:1347–1387

    Article  MathSciNet  MATH  Google Scholar 

  76. Glowinski R, Kuznetsov Y (2007) Distributed Lagrange multipliers based on fictitious domain method for second order elliptic problems. Comput Methods Appl Mech Eng 196:1498–1506

    Article  MathSciNet  MATH  Google Scholar 

  77. Manzini G, Russo A, Sukumar N (2014) New perspectives on polygonal and polyhedral finite element methods. Math Models Methods Appl Sci 24:1665–1699

    Article  MathSciNet  MATH  Google Scholar 

  78. Meyer M, Lee H, Barr A, Desburn M (2002) Generalized barycentric coordinates on irregular polygons. J Graph Tools 7:13–22

    Article  MATH  Google Scholar 

  79. Warren J (1996) Barycentric coordinates for convex polytopes. Adv Comput Math 6:97–108

    Article  MathSciNet  MATH  Google Scholar 

  80. Warren J, Schafer S, Hirani AN, Desburn M (2007) Barycentric coordinates for convex sets. Adv Comput Math 27:319–338

    Article  MathSciNet  MATH  Google Scholar 

  81. Floater MS, Gillette A, Sukumar N (2014) Gradient bounds for Wachspress coordinates on polytopes. SIAM J Numer Anal 52:515–532

    Article  MathSciNet  MATH  Google Scholar 

  82. Floater MS (2003) Mean value coordinates. Comput Aided Geom Des 20:19–27

    Article  MathSciNet  MATH  Google Scholar 

  83. Hormann K, Floater MS (2006) Mean value coordinates for arbitrary planar polygons. ACM Trans Graph 25:1424–1441

    Article  Google Scholar 

  84. Floater MS, Kós G, Reimers M (2005) Mean value coordinates in 3D. Comput Aided Geom Des 22:623–631

    Article  MathSciNet  MATH  Google Scholar 

  85. Ju T, Schafer S, Warr (2005) Mean value coordinates for closed triangular meshes. In: ACM Transactions on Graphics (TOG)—proceedings of ACM SIGGRAPH, vol 27, pp 561–566

  86. Floater MS, Hormann K, Kós G (2006) A general construction of barycentric coordinates over convex polygons. Adv Comput Math 24:311–331

    Article  MATH  Google Scholar 

  87. Floater M S (2014) Wachspress and mean value coordinates. In: Approximation theory XIV: San Antonio 2013—Springer proceedings in mathematics and statistics, vol 83, pp 81–102

  88. Wicke M, Botsch M, Gross M (2007) A finite element method onconvex polyhedra. Comput Graph Forum 26:355–364

    Article  Google Scholar 

  89. Sibson R (1980) A vector identity for the Dirichlet tessellation. Math Proc Camb Philos Soc 87:151–155

    Article  MathSciNet  MATH  Google Scholar 

  90. Sukumar N, Moran B, Belytschko T (1998) The natural element method in solid mechanics. Int J Numer Methods Eng 43:839–887

    Article  MathSciNet  MATH  Google Scholar 

  91. Sukumar N, Moran B, Semenov AY, Belikov VV (2001) Natural neighbour Galerkin methods. Int J Numer Methods Eng 50:1–27

    Article  MathSciNet  MATH  Google Scholar 

  92. Ledoux H, Gold C (2005) An efficient natural neighbour interpolation algorithm for geoscientific modelling. Developments in spatial data handling. Springer, Berlin, pp 97–108

    Chapter  Google Scholar 

  93. Braun J, Sambridge M (1995) A numerical method for solving partial differential equations on highly irregular evolving grids. Nature 376:655–660

    Article  Google Scholar 

  94. Sambridge M, Braun J, McQueen H (1995) Geophysical parametrization and interpolyation of irregular data using natural neighbours. Geophys J Int 122:837–857

    Article  Google Scholar 

  95. Natarajan S, Ooi ET, Chiong I, Song C (2014) Convergence and accuracy of displacement based finite element formulations over arbitrary polygons:laplace interpolants, strain smoothing and scaled boundary polygon formulation. Finite Elem Anal Des 85:101–122

    Article  MathSciNet  Google Scholar 

  96. Sukumar N (2004) Construction of polygonal interpolants: a maximum entropy approach. Int J Numer Methods Eng 61:2159–2181

    Article  MathSciNet  MATH  Google Scholar 

  97. Sukumar N (2013) Quadratic maximum-entropy serendipity shape functions for arbitrary planar polygons. Comput Methods Appl Mech Eng 263:27–41

    Article  MathSciNet  MATH  Google Scholar 

  98. Arroyo M, Orti M (2006) Local maximum-entropy approximationschemes: a seamless bridge between finite elements and mesh free methods. Int J Numer Methods Eng 62:2167–2202

    Article  MATH  Google Scholar 

  99. Hormann K, Sukumar N (2008) Maximum entropy coordinates for arbitrary polytopes. Comput Graph Forum 27:1513–1520

    Article  Google Scholar 

  100. Pick T (2007) Natürliche Elementkoordinaten auf Polyedern: Ein objektorientierter Entwurf am Beispiel der FEM. PhD Thesis, Leibnitz University Hannover

  101. Ju T, Liepa P, Warren J (2007) A general geometric construction of coordinates in a convex simplicial polytope. Comput Aided Geom Des 24:161–178

    Article  MathSciNet  MATH  Google Scholar 

  102. Gain AL, Paulino GH, Duarte LS, Menezes IFM (2015) Topology optimization using polytopes. Comput Methods Appl Mech Eng 293:411–430

    Article  MathSciNet  Google Scholar 

  103. Ruess M, Schillinger D, Bazilevs Y, Varduhn V, Rank E (2013) Weakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method. Int J Numer Methods Eng 95:811–846

    Article  MathSciNet  Google Scholar 

  104. Abedian A, Parvizian J, Düster A, Khademyzadeh H, Rank E (2013) Performance of different integration schemes in facing discontinuities in the finite cell method. Int J Comput Methods 10(23):1350002/1–1350002/24

  105. Varduhn V, Hsu M-C, Ruess M, Schillinger D (2016) The tetrahedral finite cell method: higher-order immersogeometric analysis on adaptive non-boundary-fitted meshes. Int J Numer Methods Eng 1–26. doi:10.1002/nme.5207

  106. Xu F, Schillinger D, D K, Varduhn V, Wang C, Hsu M-C, (2015) The tetrahedral finite cell method for fluids: immersogeometric analysis of turbulent flow around complex geometries. Comput Fluids 1–19: doi:10.1016/j.compfluid.2015.08.027

  107. Duczek S, Duvigneau F, Gabbert U (2015) The finite cell method for arbitrary tetrahedral meshes. Finite Elem Anal Des 1–29 (under review)

  108. Mousavi SE, Xiao H, Sukumar N (2010) Generalized gaussian quadrature rules on arbitrary polygons. Int J Numer Methods Eng 82:99–113

    MathSciNet  MATH  Google Scholar 

  109. Mousavi SE, Sukumar N (2011) Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons. Comput Mech 47:535–554

    Article  MathSciNet  MATH  Google Scholar 

  110. Pick T, Milbradt P (2006) Quadrature points on polyhedral elements. In: Proceedings of the 23th joint international conference on computing and decision making in civil and building engineering

  111. Joulaian M, Hubrich S, Düster A (2016) Numerical integration of discontinuities on arbitrary domains based on moment fitting. Comput Mech 57:979–999

    Article  MathSciNet  MATH  Google Scholar 

  112. Dasgupta G (2003) Integration within polygonal finite elements. J Aerosp Eng 16:9–18

    Article  Google Scholar 

  113. Sudhakar Y, Moitinho de Almeida JP, Wall WA (2014) An accurate, robust, and easy-to-implement method for integration over arbitrary polyhedra: application to embedded interface methods. J Comput Phys 273:393–415

    Article  Google Scholar 

  114. Duczek S, Gabbert U (2015) Efficient integration method for fictitious domain approaches. Comput Mech 56:725–738

    Article  MathSciNet  MATH  Google Scholar 

  115. Kudela L (2013) Highly accurate subcell integration in the context of the finite cell method. Master’s Thesis, Technical University Munich

  116. Kudela L, Zander N, Bog T, Kollmannsberger S, Rank E (2015) Efficient and accurate numerical quadrature for immersed boundary methods. Adv Model Simul Eng Sci 2–10:1–22

    Google Scholar 

  117. Dumonet D (2014) Towards efficient and accurate 3D cut cell integration in the context of the finite cell method. Master’s Thesis, Technical University Munich

  118. Kudela L, Zander N, Kollmannsberger S, Rank E (2016) Smart octrees: Accurately integrating discontinous functions in 3D. Comput Methods Appl Mech Eng 1–33 (online)

  119. Lloyd SP (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28:129–137

    Article  MathSciNet  MATH  Google Scholar 

  120. Királyfalvi G, Szabó B (1997) Quasi-regional mapping for the p-version of the finite element method. Finite Elem Anal Des 27:85–97

    Article  MathSciNet  MATH  Google Scholar 

  121. Talischi C, Pereira A, Menezes IFM, Paulino GH (2015) Gradient correction for polygonal and polyhedral finite elements. Int J Numer Methods Eng 102:728–747

  122. Düster A, Sehlhorst H-G, Rank E (2012) Numerical homogenization of heterogeneous and cellular materials utilizing the finite cell method. Comput Mech 1:1–19

  123. Verhoosel CV, van Zwieten GJ, Van Rietbergen B, de Borst R (2015) Image-based goal-oriented adaptive isogeometric analysis with application to the micro-mechanical modeling of trabecular bone. Comput Methods Appl Mech Eng 284:138–164

    Article  MathSciNet  Google Scholar 

  124. Ahmad ZAB, Gabbert U (2012) Simulation of Lamb wave reflections at plate edges using the semi-analytical finite element method. Ultrasonics 52:815–820

    Article  Google Scholar 

  125. Viktorov IA (1967) Rayleigh and Lamb waves. Plenum Press, New York

    Book  Google Scholar 

  126. Su Z, Ye L (2009) Lecture notes in applied and computational mechanics: vol 48, identification of damage using Lamb waves. Springer, Berlin

  127. Willberg C, Duczek S, Vivar Perez JM, Schmicker D, Gabber U (2012) Comparison of different higher order finite element schemes for the simulation of Lamb waves. Comput Methods Appl Mech Eng 241–244:246–261

    Article  Google Scholar 

  128. Rand A, Gillette A, Bajaj C (2014) Quadratic serendipity finite elements on polygons using generalized barycentric coordinates. AMS Math Comput 83:2691–2716

    Article  MathSciNet  MATH  Google Scholar 

  129. Beirão da Veiga L, Brezzi F, Cangiani A, Manzini G, Marini LD, Russo A (2013) Basic principles of virtual element methods. Math Models Methods Appl Sci 23:199–214

    Article  MathSciNet  MATH  Google Scholar 

  130. Beirão da Veiga L, Brezzi F, Marini LD (2013) Virtual elements for linear elasticity problems. SIAM J Numer Anal 51:794–912

    Article  MathSciNet  MATH  Google Scholar 

  131. Brezzi F, Marini LD (2013) Virtual element methods for plate bending problems. Comput Methods Appl Mech Eng 253:455–462

    Article  MathSciNet  MATH  Google Scholar 

  132. Beiräo da Veiga L, Brezzi F, Marini LD, Russo A (2014) The hitchhiker’s guide to the virtual element method. Math Models Methods Appl Sci 24:1541

    Article  MathSciNet  MATH  Google Scholar 

  133. Benedetto MF, Berrone S, Pieraccini S, Siacló S (2014) The virtual element method for discrete fracture network simulations. Comput Methods Appl Mech Eng 280:135–156

    Article  MathSciNet  Google Scholar 

  134. Gain AL, Talischi C, Paulino GH (2014) On the virtual element method for three-dimensional elasticity problems on arbitrary polyhedral meshes. Comput Methods Appl Mech Eng 282:132–160

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the German Research Foundation (DFG) for its financial support under grant DU 1613/1-1. Furthermore, the authors acknowledge Prof. N. Sukumar (UC Davis) and Prof. M. Floater (University of Oslo) for making their source codes for the computation of generalized barycentric coordinates freely available and for their generous support. Finally, Prof. G. H. Paulino (Georgia Tech) and co-workers are gratefully mentioned for providing the mesh generation software PolyMesher.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sascha Duczek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duczek, S., Gabbert, U. The finite cell method for polygonal meshes: poly-FCM. Comput Mech 58, 587–618 (2016). https://doi.org/10.1007/s00466-016-1307-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-016-1307-x

Keywords

Navigation