Skip to main content
Log in

Mixed boundary conditions for FFT-based homogenization at finite strains

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this article we introduce a Lippmann–Schwinger formulation for the unit cell problem of periodic homogenization of elasticity at finite strains incorporating arbitrary mixed boundary conditions. Such problems occur frequently, for instance when validating computational results with tensile tests, where the deformation gradient in loading direction is fixed, as is the stress in the corresponding orthogonal plane. Previous Lippmann–Schwinger formulations involving mixed boundary can only describe tensile tests where the vector of applied force is proportional to a coordinate direction. Utilizing suitable orthogonal projectors we develop a Lippmann–Schwinger framework for arbitrary mixed boundary conditions. The resulting fixed point and Newton–Krylov algorithms preserve the positive characteristics of existing FFT-algorithms. We demonstrate the power of the proposed methods with a series of numerical examples, including continuous fiber reinforced laminates and a complex nonwoven structure of a long fiber reinforced thermoplastic, resulting in a speed-up of some computations by a factor of 1000.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. www.geodict.com.

References

  1. Advani S, Tucker C III (1987) The use of tensors to describe and predict fiber orientation in short fiber composites. J Rheol 31(8):751–784. doi:10.1122/1.549945

    Article  Google Scholar 

  2. Altendorf H, Jeulin D, Willot F (2014) Influence of the fiber geometry on the macroscopic elastic and thermal properties. Int J Solids Struct 51(23–24):3807–3822. doi:10.1016/j.ijsolstr.2014.05.013

    Article  Google Scholar 

  3. Anderson Y, Mikelsons M, Tamuzh V, Tarashch I (1991) Fatigue failure of laminated carbon-fiber-reinforced plastic. Mech Compos Mater 27(1):58–62. doi:10.1007/BF00630720

    Article  Google Scholar 

  4. Andrä H, Combaret N, Dvorkin J, Glatt E, Han J, Kabel M, Keehm Y, Krzikalla F, Lee M, Madonna C, Marsh M, Mukerji T, Saenger E, Sain R, Saxena N, Ricker S, Wiegmann A, Zhan X (2013) Digital rock physics benchmarks—Part II: computing effective properties. Comput Geosci 50:33–43. doi:10.1016/j.cageo.2012.09.008

    Article  Google Scholar 

  5. Andrä H, Gurka M, Kabel M, Nissle S, Redenbach C, Schladitz K, Wirjadi O (2014) Geometric and mechanical modeling of fiber-reinforced composites. In: Bernard D, Buffière JY, Pollock T, Poulsen HF, Rollett A, Uchic M (eds.) Proceedings of the 2nd international congress on 3D materials science (3DMS), Wiley, pp 35–40. http://eu.wiley.com/WileyCDA/WileyTitle/productCd-111894545X.html

  6. ASTM International (2013) Standard Test Method for In-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a +/- 45 \(^{\circ }\) Laminate. ASTM International, West Conshohocken. www.astm.org/Standards/D3518.htm

  7. Ball J (1976) Convexity conditions and existence theorems in nonlinear elasticity. Arch Ration Mech Anal 63(4):337–403. doi:10.1007/BF00279992

    Article  Google Scholar 

  8. Barequet G, Har-Peled S (2001) Efficiently approximating the minimum-volume bounding box of a point set in three dimensions. J Algorithms 38:91–109. doi:10.1006/jagm.2000.1127

    Article  MathSciNet  MATH  Google Scholar 

  9. Bonet J, Wood R (1997) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  10. Bonnet G (2007) Effective properties of elastic periodic composite media with fibers. J Mech Phys Solids 55(5):881–899

    Article  MathSciNet  MATH  Google Scholar 

  11. Brun M, Lopez-Pamies O, Castañeda PP (2007) Homogenization estimates for fiber-reinforced elastomers with periodic microstructures. Int J Solids Struct 44(18–19):5953–5979. doi:10.1016/j.ijsolstr.2007.02.003

  12. Castañeda PP (1996) Exact second-order estimates for the effective mechanical properties of nonlinear composite materials. J Mech Phys Solids 44(6):827–862. doi:10.1016/0022-5096(96)00015-4

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen L, Chen J, Lebensohn R, Ji Y, Heo T, Bhattacharyya S, Chang K, Mathaudhu S, Liu Z, Chen LQ (2015) An integrated fast fourier transform-based phase-field and crystal plasticity approach to model recrystallization of three dimensional polycrystals. Comput Methods Appl Mech Eng 285:829–848. doi:10.1016/j.cma.2014.12.007

    Article  MathSciNet  Google Scholar 

  14. Eisenlohr P, Diehl M, Lebensohn R, Roters F (2013) A spectral method solution to crystal elasto-viscoplasticity at finite strains. Int J Plast 46:37–53. doi:10.1016/j.ijplas.2012.09.012

    Article  Google Scholar 

  15. Flaig C, Arbenz P (2011) A scalable memory efficient multigrid solver for micro-finite element analyses based on ct images. Parallel Comput 37(12):846–854 doi:10.1016/j.parco.2011.08.001. http://www.sciencedirect.com/science/article/pii/S0167819111001037. 6th International workshop on parallel matrix algorithms and applications (PMAA’10)

  16. Fliegener S Micromechanical finite element modeling of long fiber reinforced thermoplastics. Ph.D. thesis, Karlsruhe Institute of Technology (KIT) (to appear)

  17. Fliegener S, Luke M, Gumbsch P (2014) 3D microstructure modeling of long fiber reinforced thermoplastics. Compos Sci Technol 104:136–145. doi:10.1016/j.compscitech.2014.09.009

    Article  Google Scholar 

  18. Gélébart L, Mondon-Cancel R (2013) Non-linear extension of FFT-based methods accelerated by conjugate gradients to evaluate the mechanical behavior of composite materials. Comput Mater Sci 77:430–439. doi:10.1016/j.commatsci.2013.04.046

    Article  Google Scholar 

  19. Geymonat G, Müller S, Triantafyllidis N (1993) Homogenization of nonlinearly elastic materials, microscopic bifurcation and macroscopic loss of rank-one convexity. Arch Ration Mech Anal 122(3):231–290. doi:10.1007/BF00380256

    Article  MATH  Google Scholar 

  20. Henning F, Ernst H, Brüssel R, Geiger O, Krause W (2005) LFTs for automotive applications. Reinf Plast 49:24–33. doi:10.1016/S0034-3617(05)00546-1

    Article  Google Scholar 

  21. Herrmann K, Müller W, Neumann S (1999) Linear and elastic-plastic fracture mechanics revisited by use of Fourier transforms—theory and application. Comput Mater Sci 16:186–196. doi:10.1016/S0927-0256(99)00061-0

    Article  Google Scholar 

  22. HEXCEL: 3501-6 Epoxy matrix—high strength, damage-resistant, structural epoxy matrix. http://www.hexcel.com/Resources/DataSheets/Prepreg-Data-Sheets/3501-6_eu.pdf

  23. Hill R (1972) On constitutive macro-variables for heterogeneous solids at finite strain. Proc R Soc Lond A: Math Phys Eng Sci 326(1565):131–147. doi:10.1098/rspa.1972.0001

    Article  MATH  Google Scholar 

  24. Hoffmann S (2012) Computational homogenization of short fiber reinforced thermoplastic materials. Ph.D. thesis, University Kaiserslautern, LTM

  25. Kabel M, Böhlke T, Schneider M (2014) Efficient fixed point and Newton-Krylov solvers for FFT-based homogenization of elasticity at large deformations. Comput Mech 54(6):1497–1514. doi:10.1007/s00466-014-1071-8

    Article  MathSciNet  MATH  Google Scholar 

  26. Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40:3647–3679. doi:10.1016/S0020-7683(03)00143-4

    Article  MATH  Google Scholar 

  27. Kanjarla A, Lebensohn R, Balogh L, Tomé C (2012) Study of internal lattice strain distributions in stainless steel using a full-field elasto-viscoplastic formulation based on fast fourier transforms. Acta Mater 60(6–7):3094–3106. doi:10.1016/j.actamat.2012.02.014

  28. Kaßbohm S, Müller W, Feßler R (2005) Fourier series for computing the response of periodic structures with arbitrary stiffness distribution. Computat Mater Sci 32(3–4):387–391. doi:10.1016/j.commatsci.2004.09.028. http://www.sciencedirect.com/science/article/pii/S0927025604002186. IWCMM

  29. Knowles J (1977) The finite anti-plane shear field near the tip of a crack for a class of incompressible elastic solids. Int J Fract 13(5):611–639. doi:10.1007/BF00017296

    Article  MathSciNet  Google Scholar 

  30. Kobayashi S (1957) Theory of connections. Ann Mat Pura Appl 43(1):119–194. doi:10.1007/BF02411907

    Article  MathSciNet  Google Scholar 

  31. Lahellec N, Michel J, Moulinec H, Suquet P (2003) Analysis of inhomogeneous materials at large strains using fast fourier transforms. In: Miehe C (ed) IUTAM symposium on computational mechanics of solid materials at large strains, solid mechanics and its applications. Springer, Netherlands, pp 247–258. doi:10.1007/978-94-017-0297-3_22

  32. Lebensohn R, Idiart M, Castañeda PP (2012) Modeling microstructural effects in dilatational plasticity of polycrystalline materials. Proced IUTAM 3:314–330. doi:10.1016/j.piutam.2012.03.020. http://www.sciencedirect.com/science/article/pii/S2210983812000211. IUTAM symposium on linking scales in computations: from microstructure to macro-scale properties

  33. Lebensohn R, Idiart M, Castañeda PP, Vincent PG (2011) Dilatational viscoplasticity of polycrystalline solids with intergranular cavities. Philos Mag 91(22):3038–3067. doi:10.1080/14786435.2011.561811

    Article  Google Scholar 

  34. Lebensohn R, Kanjarla A, Eisenlohr P (2012) An elasto-viscoplastic formulation based on fast fourier transforms for the prediction of micromechanical fields in polycrystalline materials. Int J Plast 32–33:59–69. doi:10.1016/j.ijplas.2011.12.005

  35. Lebensohn R, Rollett A, Suquet P (2011) Fast fourier transform-based modeling for the determination of micromechanical fields in polycrystals. JOM 63(3):13–18. doi:10.1007/s11837-011-0037-y

    Article  Google Scholar 

  36. Lee SB, Lebensohn R, Rollett A (2011) Modeling the viscoplastic micromechanical response of two-phase materials using fast fourier transforms. Int J Plast 27(5):707–727. doi:10.1016/j.ijplas.2010.09.002

    Article  MATH  Google Scholar 

  37. Lefebvre G, Sinclair C, Lebensohn R, Mithieux JD (2012) Accounting for local interactions in the prediction of roping of ferritic stainless steel sheets. Model Simul Mater Sci Eng 20(2):024008. http://stacks.iop.org/0965-0393/20/i=2/a=024008

  38. Li J, Meng S, Tian X, Song F, Jiang C (2012) A non-local fracture model for composite laminates and numerical simulations by using the FFT method. Compos Part B: Eng 43(3):961–971. doi:10.1016/j.compositesb.2011.08.055

    Article  Google Scholar 

  39. Li J, Tian XX, Abdelmoula R (2012) A damage model for crack prediction in brittle and quasi-brittle materials solved by the FFT method. Int J Fract 173(2):135–146. doi:10.1007/s10704-011-9671-1

    Article  Google Scholar 

  40. Liu B, Raabe D, Roters F, Eisenlohr P, Lebensohn R (2010) Comparison of finite element and fast fourier transform crystal plasticity solvers for texture prediction. Model Simul Mater Sci Eng 18(8):085005. http://stacks.iop.org/0965-0393/18/i=8/a=085005

  41. Monchiet V, Bonnet G (2013) Numerical homogenization of nonlinear composites with a polarization-based FFT iterative scheme. Comput Mater Sci 79:276–283. doi:10.1016/j.commatsci.2013.04.035

    Article  Google Scholar 

  42. Moore E (1920) On the reciprocal of the general algebraic matrix. Bull Am Math Soc 26:394–395

    Google Scholar 

  43. Moulinec H, Suquet P (1994) A fast numerical method for computing the linear and nonlinear mechanical properties of composites. Comptes rendus de l’Académie des sciences. Série II, Mécanique, physique, chimie, astronomie 318(11):1417–1423

    MATH  Google Scholar 

  44. Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Methods Appl Mech Eng 157(1–2):69–94

    Article  MathSciNet  MATH  Google Scholar 

  45. Müller S (1987) Homogenization of nonconvex integral functionals and cellular elastic materials. Arch Ration Mech Anal 99(3):189–212. doi:10.1007/BF00284506

    Article  MATH  Google Scholar 

  46. Müller V, Böhlke T, Kabel M, Andrä H (2015) Homogenization of linear elastic properties of discontinuous reinforced composites—a comparison of mean field and voxel-based methods. Int J Solids Struct. doi:10.1016/j.ijsolstr.2015.02.030. http://www.sciencedirect.com/science/article/pii/S0020768315000761

  47. Ortega J (1968) The Newton-Kantorovich theorem. Am Math Mon 75(6):658–660. doi:10.2307/2313800

    Article  MATH  Google Scholar 

  48. Ortega J, Rheinboldt W (1970) Iterative solution of nonlinear equations in several variables. Academic Press, New York

    MATH  Google Scholar 

  49. Penrose R (1995) A generalized inverse for matrices. Math Proc Camb Philos Soc 51:406–413. doi:10.1017/S0305004100030401

    Article  MathSciNet  Google Scholar 

  50. Peterson C, Ehnert G, Liebold R, Kühfusz R (2001) Compression molding. In: Miracle D, Donaldson S (eds) Composites, ASM handbook, vol 21. Springer, Netherlands, pp 516–535

    Google Scholar 

  51. Prakash A, Lebensohn R (2009) Simulation of micromechanical behavior of polycrystals: finite elements versus fast fourier transforms. Model Simul Mater Sci Eng 17(6):064010. http://stacks.iop.org/0965-0393/17/i=6/a=064010

  52. R&G Faserverbundwerkstoffe GmbH (2009) Faserverbundwerkstoffe Handbuch—composite materials handbook, R&G Faserverbundwerkstoffe GmbH, Waldenbuch

  53. Rollett A, Lebensohn R, Groeber M, Choi Y, Li J, Rohrer G (2010) Stress hot spots in viscoplastic deformation of polycrystals. Model Simul Mater Sci Eng 18(7):074005. http://stacks.iop.org/0965-0393/18/i=7/a=074005

  54. Schneider M, Ospald F, Kabel M (2015) Computational homogenization of elasticity on a staggered grid. Int J Numer Methods Eng. doi:10.1002/nme.5008

  55. Shanthraj P, Eisenlohr P, Diehl M, Roters F (2015) Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials. Int J Plast 66:31–45. doi:10.1016/j.ijplas.2014.02.006. http://www.sciencedirect.com/science/article/pii/S0749641914000709. Plasticity of textured polycrystals in honor of Prof. Paul Van Houtte

  56. Sliseris J, Andrä H, Kabel M, Dix B, Plinke B, Wirjadi O, Frolovs G (2014) Numerical prediction of the stiffness and strength of medium density fiberboards. Mech Mater 79:73–84. doi:10.1016/j.mechmat.2014.08.005

    Article  Google Scholar 

  57. Spahn J, Andrä H, Kabel M, Müller R (2014) A multiscale approach for modeling progressive damage of composite materials using fast fourier transforms. Comput Methods Appl Mech Eng 268:871–883. doi:10.1016/j.cma.2013.10.017

    Article  MATH  Google Scholar 

  58. Suchocki C (2011) A Finite element implementation of knowles stored-energy function: theory, coding and applications. Arch Mech Eng 58(3):319–346. doi:10.2478/v10180-011-0021-7

    Google Scholar 

  59. Todd R, Allen D, Alting L (1994) Manufacturing processes reference guide. Industrial Press. https://books.google.de/books?id=6x1smAf_PAcC

  60. Vinogradov V, Milton G (2008) An accelerated FFT algorithm for thermoelastic and non-linear composites. Int J Numer Methods Eng 76(11):1678–1695. doi:10.1002/nme.2375

    Article  MathSciNet  MATH  Google Scholar 

  61. Willot F, Gillibert L, Jeulin D (2013) Microstructure-induced hotspots in the thermal and elastic responses of granular media. Int J Solids Struct 50(10):1699–1709. doi:10.1016/j.ijsolstr.2013.01.040

    Article  Google Scholar 

  62. Zeman J, Vondřejc J, Novák J, Marek I (2010) Accelerating a FFT-based solver for numerical homogenization of periodic media by conjugate gradients. J Comput Phys 229(21):8065–8071. doi:10.1016/j.jcp.2010.07.010

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

MS gratefully acknowledges financial support by the German Research Foundation (DFG), Federal Cluster of Excellence EXC 1075 “MERGE Technologies for Multifunctional Lightweight Structures”..

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Kabel.

The Lippmann–Schwinger equation with mixed boundary conditions and gradient descent

The Lippmann–Schwinger equation with mixed boundary conditions and gradient descent

Similarly to [25], we exhibit the fixed point scheme for the generalized Lippmann–Schwinger equation (12) as a gradient descent method, explaining its basic mechanisms and particularly proofing convergence of Algorithm 1.

Using the \(\mathbb {C}^0\)—weighted \(L^2\)—inner product

$$\begin{aligned} (S,T)\mapsto \int _Y S:\mathbb {C}^0:T\, \mathrm{d}x \end{aligned}$$

we want to compute the gradient of

$$\begin{aligned} f(F)=\int _Y {W(x,F(x))- \bar{P}:F(x)}\, \mathrm{d}x, \end{aligned}$$

i.e. setting

$$\begin{aligned} {\text {GRAD }} f = H_0 + \nabla w, \quad H_0\in \mathbb {R}^{3\times 3}, \quad \mathbb {P}:H_0=0 \end{aligned}$$

we need to solve

$$\begin{aligned} \int _Y {\text {GRAD }} f(F) :\mathbb {C}^0:G \, dx=Df(F)[G] \end{aligned}$$
(26)

for all G of the form \(G=\langle G\rangle _Y+\nabla v\) with \(\mathbb {P}:\langle G\rangle _Y=0\). Inserting the definition, (26) reads

$$\begin{aligned}&\int _Y (H_0 + \nabla w) :\mathbb {C}^0:(\langle G\rangle _Y+\nabla v) \, \mathrm{d}x \\&\quad =\int _Y (P(F)- \bar{P}):(\langle G\rangle _Y+\nabla v)\, \mathrm{d}x, \end{aligned}$$

which decomposes into the two equations

$$\begin{aligned}&\int _Y H_0 :\mathbb {C}^0:\langle G\rangle _Y \, \mathrm{d}x=\int _Y (\langle P(F)\rangle _Y - \bar{P}):\langle G\rangle _Y\, \mathrm{d}x\\&\int _Y \nabla w :\mathbb {C}^0:\nabla v \, \mathrm{d}x=\int _Y P(F):\nabla v\, \mathrm{d}x \end{aligned}$$

The first equation becomes

$$\begin{aligned} \mathbb {Q}:\mathbb {C}^0:\mathbb {Q}: H_0 = \mathbb {Q}:\big (\langle P(F)\rangle _Y - \bar{P}\big ), \end{aligned}$$

i.e. with \(\mathbb {P}:\bar{P}=0\) and \(\mathbb {M}=(\mathbb {Q}:\mathbb {C}^0:\mathbb {Q})^\dagger \) we have

$$\begin{aligned} H^0 = \mathbb {M}:\mathbb {Q}:\big (\langle P(F)\rangle _Y - \bar{P}\big ). \end{aligned}$$

The second equation implies

$$\begin{aligned} \nabla w=\varGamma ^0:P(F), \end{aligned}$$

see [25]. Consequently, the gradient reads

$$\begin{aligned} {\text {GRAD }} f(F)= \mathbb {M}:\mathbb {Q}:(\langle P(F)\rangle _Y - \bar{P}) + \varGamma ^0:P(F). \end{aligned}$$

A forward Euler discretization (with time step \(\Delta t\)) of the negative gradient flow for f becomes

$$\begin{aligned} F^{k+1}=F^k - \Delta t \left[ \mathbb {M}:\mathbb {Q}:(\langle P(F)\rangle _Y - \bar{P}) + \varGamma ^0:P(F)\right] . \end{aligned}$$

Inserting

$$\begin{aligned} F^k = \bar{F} + \mathbb {Q}:\langle F^k \rangle _Y + \varGamma ^0:\mathbb {C}^0:F^k \end{aligned}$$

we get

$$\begin{aligned} F^{k+1}= & {} (1-\Delta t)F^k - \Delta t \left[ -\bar{F} + \varGamma ^0:(P(F)-\mathbb {C}^0:F^k) \right. \\&\left. +\mathbb {M}:\mathbb {Q}:(\langle P(F)\rangle _Y - \bar{P}) - \mathbb {Q}:\langle F^k \rangle _Y \right] \end{aligned}$$

Using

$$\begin{aligned}&\mathbb {M}:\mathbb {Q}:(\langle P(F)\rangle _Y - \bar{P}) - \mathbb {Q}:\langle F^k \rangle _Y \\&\quad = \mathbb {M}:\mathbb {Q}:(\langle P(F) - C^0 F^k \rangle _Y - \bar{P}) \\&\qquad +\,\mathbb {M}:\mathbb {Q}:C^0:\langle F^k \rangle _Y- \mathbb {Q}:\langle F^k \rangle _Y \\&\quad = \mathbb {M}:\mathbb {Q}:(\langle P(F) \rangle _Y - C^0: \langle F^k \rangle _Y - \bar{P})\\&\qquad +\, \mathbb {M}:\mathbb {Q}:C^0:\bar{F} \end{aligned}$$

we arrive at the expression

$$\begin{aligned} F^{k+1}= & {} (1-\Delta t)F^k - \Delta t \left[ -\bar{F} - \mathbb {M}:(\bar{P}-\mathbb {Q}:C^0:\bar{F}) \right. \\&\left. +(\varGamma ^0+\mathbb {M}:\mathbb {Q}:\langle \cdot \rangle _Y) :(P(F)-\mathbb {C}^0: F^k)\right] , \end{aligned}$$

which, for time step \(\Delta t=1\), is nothing but the Lippmann–Schwinger equation (12).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabel, M., Fliegener, S. & Schneider, M. Mixed boundary conditions for FFT-based homogenization at finite strains. Comput Mech 57, 193–210 (2016). https://doi.org/10.1007/s00466-015-1227-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1227-1

Keywords

Mathematics Subject Classification

Navigation