Skip to main content
Log in

A complementary study of analytical and computational fluid-structure interaction

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper introduces new initial value problems for the design and analysis of fluid-structure interaction algorithms. The problems are constructed from a finite number of sinusoidal perturbations of thin structures superposed on incompressible fluids. Explicit analytical solutions are provided for rigorous quantitative comparisons including viscous effects. The equation governing a single inviscid mode is split into fluid and structure subproblems and numerical parameters are derived for several partitioned algorithms based on a Dirichlet-Neumann decomposition and a second-order backward difference time discretization. Numerical experiments are performed using a stabilized fractional-step finite element method for the fluid and membrane finite elements for the structure. The convergence behaviour of the finite element solutions to the analytical solutions is demonstrated. Finally, the stability and performance of the numerical parameters derived from a single inviscid mode are presented for more general problems including multiple modes and viscous effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Badia S, Nobile F, Vergara C (2008) Fluid-structure partitioned procedures based on Robin transmission conditions. J Comput Phys 227:7027–7051. doi:10.1016/j.jcp.2008.04.006

    Article  MATH  MathSciNet  Google Scholar 

  2. Bathe KJ, Ledezma GA (2007) Benchmark problems for incompressible fluid flows with structural interactions. Comput Struct 85:628–644. doi:10.1016/j.compstruc.2007.01.025

    Article  Google Scholar 

  3. Causin P, Gerbeau J, Nobile F (2005) Added-mass effect in the design of partitioned algorithms for fluid-structure problems. Comput Methods Appl Mech Eng 194:4506–4527. doi:10.1016/j.cma.2004.12.005

    Article  MATH  MathSciNet  Google Scholar 

  4. Codina R (1998) Comparison of some finite element methods for solving the diffusion-convection-reaction equation. Comput Methods Appl Mech Eng 156:185–210. doi:10.1016/S0045-7825(97)00206-5

    Article  MATH  MathSciNet  Google Scholar 

  5. Codina R (2000) Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods. Comput Methods Appl Mech Eng 190:1579–1599. doi:10.1016/S0045-7825(00)00254-1

    Article  MATH  MathSciNet  Google Scholar 

  6. Codina R (2001) Pressure stability in fractional step finite element methods for incompressible flows. J Comput Phys 170:112–140. doi:10.1006/jcph.2001.6725

    Article  MATH  MathSciNet  Google Scholar 

  7. Codina R (2001b) A stabilized finite element method for generalized stationary incompressible flows. Comput Methods Appl Mech Eng 190:2681–2706. doi:10.1016/S0045-7825(00)00260-7

    Article  MATH  MathSciNet  Google Scholar 

  8. Codina R (2002) Stabilized finite element approximation of transient incompressible flows using orthogonal subscales. Comput Methods Appl Mech Eng 191:4295–4321. doi:10.1016/S0045-7825(02)00337-7

    Article  MATH  MathSciNet  Google Scholar 

  9. Codina R, Badia S (2006) On some pressure segregation methods of fractional-step type for the finite element approximation of incompressible flow problems. Comput Methods Appl Mech Eng 195:2900–2918. doi:10.1016/j.cma.2004.06.048

    Article  MATH  MathSciNet  Google Scholar 

  10. Dadvand P, Rossi R, Oñate E (2010) An object-oriented environment for developing finite element codes for multi-disciplinary applications. Arch Comput Methods Eng 17:253–297. doi:10.1007/s11831-010-9045-2

    Article  MATH  Google Scholar 

  11. Degroote J (2011) On the similarity between Dirichlet-Neumann with interface artificial compressibility and Robin-Neumann schemes for the solution of fluid-structure interaction problems. J Comput Phys 230:6399–6403. doi:10.1016/j.jcp.2011.05.012

    Article  MATH  MathSciNet  Google Scholar 

  12. Degroote J, Haelterman R, Annerel S, Bruggeman P, Vierendeels J (2010a) Performance of partitioned procedures in fluid-structure interaction. Comput Struct 88:446–457. doi:10.1016/j.compstruc.2009.12.006

    Article  Google Scholar 

  13. Degroote J, Swillens A, Bruggeman P, Haelterman R, Segers P, Vierendeels J (2010b) Simulation of fluid-structure interaction with the interface artificial compressibility method. Int J Numer Methods Biomed Eng 26:276–289. doi:10.1002/cnm.1276

    Article  MATH  MathSciNet  Google Scholar 

  14. Deparis S, Fernández MA, Formaggia L (2003) Acceleration of a fixed point algorithm for fluid-structure interaction using transpiration conditions. M2AN Math Model Numer Anal 37:601–616. doi:10.1051/m2an:2003050

    Article  MATH  MathSciNet  Google Scholar 

  15. Dettmer WG, Perić D (2012) A new staggered scheme for fluid-structure interaction. Int J Numer Methods Eng 93:1–22. doi:10.1002/nme.4370

    Article  Google Scholar 

  16. Dunne T, Rannacher R (2006) Adaptive finite element approximation of fluid-structure interaction based on an Eulerian variational formulation. In: Bungartz HJ, Schäfer M (eds) Fluid-structure interaction: modelling, simulation, optimization, LNCSE, 53rd edn. Springer, Berlin, pp 110–145

    Chapter  Google Scholar 

  17. Formaggia L, Gerbeau J, Nobile F, Quarteroni A (2001) On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Comput Methods Appl Mech Eng 191:561–582. doi:10.1016/S0045-7825(01)00302-4

    Article  MATH  MathSciNet  Google Scholar 

  18. Förster C, Wall WA, Ramm E (2007) Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput Methods Appl Mech Eng 196:1278–1293. doi:10.1016/j.cma.2006.09.002

    Article  MATH  Google Scholar 

  19. Geller S, Tölke J, Krafczyk M (2006) Lattice-Boltzmann method on quadtree-type grids for fluid-structure interaction. In: Bungartz HJ, Schäfer M (eds) Fluid-structure interaction: modelling, simulation, optimization, LNCSE, 53rd edn. Springer, Berlin, pp 270–293

    Chapter  Google Scholar 

  20. Gerbeau JF, Vidrascu M (2003) A quasi-Newton algorithm based on a reduced model for fluid-structure interaction problems in blood flows. M2AN Math Model Numer Anal 37:631–647. doi:10.1051/m2an:2003049

    Article  MATH  MathSciNet  Google Scholar 

  21. Heil M, Hazel AL, Boyle J (2008) Solvers for large-displacement fluid-structure interaction problems: segregated versus monolithic approaches. Comput Mech 43:91–101. doi:10.1007/s00466-008-0270-6

    Article  MATH  Google Scholar 

  22. Idelsohn S, Marti J, Souto-Iglesias A, Onate E (2008) Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM. Comput Mech 43:125–132. doi:10.1007/s00466-008-0245-7

    Article  MATH  Google Scholar 

  23. Joosten M, Dettmer W, Perić D (2009) Analysis of the block Gauss-Seidel solution procedure for a strongly coupled model problem with reference to fluid-structure interaction. Int J Numer Meth Eng 78:757–778. doi:10.1002/nme.2503

    Article  MATH  Google Scholar 

  24. Joosten M, Dettmer W, Perić D (2010) On the temporal stability and accuracy of coupled problems with reference to fluid-structure interaction. Int J Numer Methods Fluids 64:1363–1378. doi:10.1002/fld.2333

    Article  MATH  Google Scholar 

  25. Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid-structure interactions in parachute systems. Comput Methods Appl Mech Eng 190:321–332. doi:10.1016/S0045-7825(00)00204-8

    Article  MATH  Google Scholar 

  26. Kassiotis C, Ibrahimbegovic A, Niekamp R, Matthies HG (2011) Nonlinear fluid-structure interaction problem. part i: implicit partitioned algorithm, nonlinear stability proof and validation examples. Comput Mech 47:305–323. doi:10.1007/s00466-010-0545-6

    Article  MATH  MathSciNet  Google Scholar 

  27. Küttler U, Wall WA (2008) Fixed-point fluid-structure interaction solvers with dynamic relaxation. Comput Mech 43:61–72. doi:10.1007/s00466-008-0255-5

    Article  MATH  Google Scholar 

  28. Lamb H (1993) Hydrodynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  29. Nayer GD, Kalmbach A, Breuer M, Sicklinger S, Wüchner R (2014) Flow past a cylinder with a flexible splitter plate: a complementary experimental-numerical investigation and a new FSI test case (FSI-PfS-1a). Comput Fluids 99:18–43. doi:10.1016/j.compfluid.2014.04.020

    Article  Google Scholar 

  30. Naylor A, Sell G (1982) Linear operator theory in engineering and science, applied mathematical sciences, vol 40. Springer, New York

    Book  Google Scholar 

  31. Nobile F, Vergara C (2008) An effective fluid-structure interaction formulation for vascular dynamics by generalized Robin conditions. SIAM J Sci Comput 30:731–763. doi:10.1137/060678439

    Article  MATH  MathSciNet  Google Scholar 

  32. Prosperetti A (1976) Viscous effects on small-amplitude surface waves. Phys Fluids 19:195–203. doi:10.1063/1.861446

    Article  MATH  MathSciNet  Google Scholar 

  33. Råback P, Ruokolainen J, Lyly M, Järvinen E (2001) Fluid-structure interaction boundary conditions by artificial compressibility. In: ECCOMAS Computational Fluid Dynamics Conference, Swansea

  34. Schäfer M, Heck M, Yigit S (2006) An implicit partitioned method for the numerical simulation of fluid-structure interaction. In: Bungartz HJ, Schäfer M (eds) Fluid-structure interaction: modelling, simulation, optimization, LNCSE, 53rd edn. Springer, Berlin, pp 171–194

    Chapter  Google Scholar 

  35. Sternel D, Schäfer M, Heck M, Yigit S (2008) Efficiency and accuracy of fluid-structure interaction simulations using an implicit partitioned approach. Comput Mech 43:103–113. doi:10.1007/s00466-008-0278-y

    Article  MATH  Google Scholar 

  36. Takizawa K, Tezduyar TE (2012) Computational methods for parachute fluid-structure interactions. Arch Comput Methods Eng 19:125–169. doi:10.1007/s11831-012-9070-4

    Article  MathSciNet  Google Scholar 

  37. Takizawa K, Bazilevs Y, Tezduyar TE, Hsu MC, Øiseth O, Mathisen KM, Kostov N, McIntyre S (2014a) Engineering analysis and design with ALE-VMS and space-time methods. Arch Comput Methods Eng 21:481–508. doi:10.1007/s11831-014-9113-0

  38. Takizawa K, Tezduyar TE, Boswell C, Kolesar R, Montel K (2014b) FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes. Comput Mech 54:1203–1220. doi:10.1007/s00466-014-1052-y

    Article  MATH  MathSciNet  Google Scholar 

  39. Tezduyar TE, Sathe S (2007) Modeling of fluid-structure interactions with the space-time finite elements: solution techniques. Int J Numer Meth Fluids 54:855–900. doi:10.1002/fld.1430

    Article  MATH  MathSciNet  Google Scholar 

  40. Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces - the deforming-spatial-domain/space-time procedure: I. the concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94:339–351. doi:10.1016/0045-7825(92)90059-S

    Article  MATH  MathSciNet  Google Scholar 

  41. Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space-time finite element techniques for computation of fluid-structure interactions. Comput Methods Appl Mech Eng 195:2002–2027. doi:10.1016/j.cma.2004.09.014

    Article  MATH  MathSciNet  Google Scholar 

  42. Turek S, Hron J (2006) Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. In: Bungartz HJ, Schäfer M (eds) Fluid-structure interaction: modelling, simulation, optimization, LNCSE, 53rd edn. Springer, Berlin, pp 371–385

    Chapter  Google Scholar 

  43. Wüchner R, Kupzok A, Bletzinger KU (2007) A framework for stabilized partitioned analysis of thin membrane-wind interaction. Int J Numer Methods Fluids 54:945–963. doi:10.1002/fld.1474

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of Abengoa. The authors wish to express their gratitude for valuable discussions with Dr. Riccardo Rossi of CIMNE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Andre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andre, M., Bletzinger, KU. & Wüchner, R. A complementary study of analytical and computational fluid-structure interaction. Comput Mech 55, 345–357 (2015). https://doi.org/10.1007/s00466-014-1104-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-014-1104-3

Keywords

Navigation