Skip to main content

Advertisement

Log in

Clinical significance of lipid droplets formed in the peritoneal fluid after laparoscopic surgery for gastric cancer

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

Several studies have previously reported that laparoscopic surgery using an energy sealing device generates hazardous surgical smoke. However, the droplets appearing on the surface of peritoneal fluid irrigated with saline, after dissection phase of laparoscopic gastrectomy were ignored for a long time. This study aimed to investigate the composition and clinical significance of these droplet particles.

Methods

This study prospectively enrolled 15 patients with early gastric cancer (cT1NanyM0) who were scheduled for laparoscopic gastrectomy. Floating phases of peritoneal irrigation fluid containing droplets in dissected area were retrieved before and after surgical dissection. Using gas chromatography analysis, the areas under the peak were compared between the samples retrieved before and after surgical dissection. We also analyzed if the area value with significant change was related to the inflammatory response.

Results

In gas chromatography, the area values after laparoscopic surgical dissection were significantly increased in 10 out of 37 kinds of fatty acids, compared to those before surgical dissection. The significant increase in area value of α-linoleic and eicosadienoic acids were positively correlated with the elevated level of C-reactive protein at postoperative day 2 (Spearman’s ρ = 0.843, P < 0.001; Spearman’s ρ = 0.785, P = 0.001).

Conclusions

The lipid droplets, generated after laparoscopic lymphadenectomy during gastric cancer surgery, contained various types of fatty acids, and some of them have been found to be associated with inflammatory response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lee HJ, Hyung WJ, Yang HK, Han SU, Park YK, An JY, Kim W, Kim HI, Kim HH, Ryu SW, Hur H, Kong SH, Cho GS, Kim JJ, Park DJ, Ryu KW, Kim YW, Kim JW, Lee JH, Kim MC, Korean Laparo-endoscopic Gastrointestinal Surgery Study G (2019) Short-term outcomes of a multicenter randomized controlled trial comparing laparoscopic distal gastrectomy with D2 lymphadenectomy to open distal gastrectomy for locally advanced gastric cancer (KLASS-02-RCT). Ann Surg 270:983–991

    Article  PubMed  Google Scholar 

  2. Lee HJ, Yang HK (2013) Laparoscopic gastrectomy for gastric cancer. Dig Surg 30:132–141

    Article  PubMed  Google Scholar 

  3. Yang HK, Hyung WJ, Han SU, Lee YJ, Park JM, Cho GS, Kwon OK, Kong SH, Kim HI, Lee HJ, Kim W, Ryu SW, Jin SH, Oh SJ, Ryu KW, Kim MC, Ahn HS, Park YK, Kim YH, Hwang SH, Kim JW, Kim JJ (2021) Comparison of surgical outcomes among different methods of esophagojejunostomy in laparoscopic total gastrectomy for clinical stage I proximal gastric cancer: results of a single-arm multicenter phase II clinical trial in Korea, KLASS 03. Surg Endosc 35:1156–1163

    Article  PubMed  Google Scholar 

  4. Choi SH, Kwon TG, Chung SK, Kim TH (2014) Surgical smoke may be a biohazard to surgeons performing laparoscopic surgery. Surg Endosc 28:2374–2380

    Article  PubMed  Google Scholar 

  5. Takahashi H, Yamasaki M, Hirota M, Miyazaki Y, Moon JH, Souma Y, Mori M, Doki Y, Nakajima K (2013) Automatic smoke evacuation in laparoscopic surgery: a simplified method for objective evaluation. Surg Endosc 27:2980–2987

    Article  PubMed  Google Scholar 

  6. Cao J, Schwichtenberg KA, Hanson NQ, Tsai MY (2006) Incorporation and clearance of omega-3 fatty acids in erythrocyte membranes and plasma phospholipids. Clin Chem 52:2265–2272

    Article  CAS  PubMed  Google Scholar 

  7. Browning LM, Walker CG, Mander AP, West AL, Madden J, Gambell JM, Young S, Wang L, Jebb SA, Calder PC (2012) Incorporation of eicosapentaenoic and docosahexaenoic acids into lipid pools when given as supplements providing doses equivalent to typical intakes of oily fish. Am J Clin Nutr 96:748–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hatanaka E, Dermargos A, Hirata AE, Vinolo MA, Carpinelli AR, Newsholme P, Armelin HA, Curi R (2013) Oleic, linoleic and linolenic acids increase ros production by fibroblasts via NADPH oxidase activation. PLoS ONE 8:e58626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mazière C, Conte M, Degonville J, Ali D, Mazière J (1999) Cellular enrichment with polyunsaturated fatty acids induces an oxidative stress and activates the transcription factors AP1 and NFkappaB. Biochem Biophys Res Commun 265:116–122

    Article  PubMed  CAS  Google Scholar 

  10. Kucukgul A, Erdogan S (2017) Low concentration of oleic acid exacerbates LPS-induced cell death and inflammation in human alveolar epithelial cells. Exp Lung Res 43:1–7

    Article  CAS  PubMed  Google Scholar 

  11. Fujieda Y, Manno A, Hayashi Y, Rhodes N, Guo L, Arita M, Bamba T, Fukusaki E (2013) Inflammation and resolution are associated with upregulation of fatty acid beta-oxidation in Zymosan-induced peritonitis. PLoS ONE 8:e66270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goncalves-de-Albuquerque CF, Silva AR, Burth P, Castro-Faria MV, Castro-Faria-Neto HC (2015) Acute respiratory distress syndrome: role of oleic acid-triggered lung injury and inflammation. Mediat Inflamm 2015:260465

    Article  CAS  Google Scholar 

  13. Roux J, McNicholas CM, Carles M, Goolaerts A, Houseman BT, Dickinson DA, Iles KE, Ware LB, Matthay MA, Pittet JF (2013) IL-8 inhibits cAMP-stimulated alveolar epithelial fluid transport via a GRK2/PI3K-dependent mechanism. FASEB J 27:1095–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sears BW, Stover MD, Callaci J (2009) Pathoanatomy and clinical correlates of the immunoinflammatory response following orthopaedic trauma. J Am Acad Orthop Surg 17:255–265

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fuortes M, Pollock TW, Holman MJ, McMillen MA, Jaffe BM, Scalea TM (1998) Changes in extravascular lung water and fatty acids in a hyperdynamic canine model of sepsis. J Trauma 28:1455–1459

    Article  Google Scholar 

  16. Steven T, Berk MP, Rocio L, Chung Y, Zhang R, Parsi M, Bronner PM, Feldstein EA (2012) Lipidomic profiling of serum and pancreatic fluid in chronic pancreatitis. Pancreas 41:518–522

    Article  CAS  Google Scholar 

  17. Zhou BR, Zhang JA, Zhang Q, Permatasari F, Xu Y, Wu D, Yin ZQ, Luo D (2013) Palmitic acid induces production of proinflammatory cytokines interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha via a NF-kappaB-dependent mechanism in HaCaT keratinocytes. Mediat Inflamm 2013:530429

    Google Scholar 

  18. Liu X, Miyazaki M, Flowers MT, Sampath H, Zhao M, Chu K, Paton CM, Joo DS, Ntambi JM (2010) Loss of Stearoyl-CoA desaturase-1 attenuates adipocyte inflammation: effects of adipocyte-derived oleate. Arterioscler Thromb Vasc Biol 30:31–38

    Article  PubMed  CAS  Google Scholar 

  19. de Souza CO, Valenzuela CA, Baker EJ, Miles EA, Rosa Neto JC, Calder PC (2018) Palmitoleic acid has stronger anti-inflammatory potential in human endothelial cells compared to oleic and palmitic acids. Mol Nutr Food Res 62:e1800322

    Article  PubMed  CAS  Google Scholar 

  20. Talbot NA, Wheeler-Jones CP, Cleasby ME (2014) Palmitoleic acid prevents palmitic acid-induced macrophage activation and consequent p38 MAPK-mediated skeletal muscle insulin resistance. Mol Cell Endocrinol 393:129–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bork CS, Baker EJ, Lundbye-Christensen S, Miles EA, Calder PC (2019) Lowering the linoleic acid to alpha-linoleic acid ratio decreases the production of inflammatory mediators by cultured human endothelial cells. Prostaglandins Leukot Essent Fatty Acids 141:1–8

    Article  CAS  PubMed  Google Scholar 

  22. Di Nicolantonio JJ, O’Keefe JH (2018) Importance of maintaining a low omega-6/omega-3 ratio for reducing inflammation. Open Heart 5:e000946

    Article  Google Scholar 

  23. Yagaloff K, Franco L, Simko B, Burghardt B (1995) Essential fatty acids are antagonists of the leukotriene B4 receptor. Prostaglandins Leukot Essent Fatty Acids 52:293–297

    Article  CAS  PubMed  Google Scholar 

  24. Huang YS, Huang WC, Li CW, Chuang LT (2011) Eicosadienoic acid differentially modulates production of pro-inflammatory modulators in murine macrophages. Mol Cell Biochem 358:85–94

    Article  CAS  PubMed  Google Scholar 

  25. Wu Y, Potempa L, El Kebir D, Filep J (2015) C-reactive protein and inflammation: conformational changes affect function. Biol Chem 396:1181–1197

    Article  CAS  PubMed  Google Scholar 

  26. Park JH, Son YG, Kim TH, Huh YJ, Yang JY, Suh YJ, Suh YS, Kong SH, Lee HJ, Yang HK (2017) Identification of candidates for early discharge after gastrectomy. Ann Surg Oncol 24:159–166

    Article  PubMed  Google Scholar 

  27. Soydan AS, Dokmetas HS, Cetin M, Koyuncu A, Kaptanoglu E, Elden H (2006) The evaluation of the role of beta-hydroxy fatty acids on chronic inflammation and insulin resistance. Mediators Inflamm 2006:64980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee J, Sohn K, Rhee S, Hwang D (2001) Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through toll-like receptor 4. J Biol Chem 276:16683–16689

    Article  CAS  PubMed  Google Scholar 

  29. Fritsche KL (2015) The science of fatty acids and inflammation. Adv Nutr 6:293S-301S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zazula R, Průcha M, Pehal F, Dryahina K, Moravec M, Müller M, Nejtek T (2019) Kinetics of myristic acid following accidentally induced septic response. Prague Med Rep 120:103–106

    Article  PubMed  Google Scholar 

  31. Kauppi AM, Edin A, Ziegler I, Molling P, Sjostedt A, Gylfe A, Stralin K, Johansson A (2016) Metabolites in blood for prediction of bacteremic sepsis in the emergency room. PLoS ONE 11:e0147670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Jess P, Schultz K, Bendtzen K, Nielsen OH (2000) Systemic inflammatory responses during laparoscopic and open inguinal hernia repair: a randomised prospective study. Eur J Surg 166:540–544

    Article  CAS  PubMed  Google Scholar 

  33. Kumagai Y, Tajima Y, Ishiguro T, Haga N, Imaizumi H, Suzuki O, Kuwabara K, Matsuzawa T, Sobajima J, Fukuchi M, Baba H, Ishibashi K, Mochiki E, Ishida H (2014) Production of intraperitoneal interleukin-6 following open or laparoscopic assisted distal gastrectomy. Int Surg 99:812–818

    Article  PubMed  PubMed Central  Google Scholar 

  34. Irino T, Hiki N, Ohashi M, Nunobe S, Sano T, Yamaguchi T (2016) The Hit and Away technique: optimal usage of the ultrasonic scalpel in laparoscopic gastrectomy. Surg Endosc 30:245–250

    Article  PubMed  Google Scholar 

  35. Pogorelić Z, Perko Z, Druzijanić N, Tomić S, Mrklić I (2009) How to prevent lateral thermal damage to tissue using the harmonic scalpel: experimental study on pig small intestine and abdominal wall. Eur Surg Res 43:235–240

    Article  PubMed  Google Scholar 

  36. Tanaka K, Miyashiro I, Yano M, Kishi K, Motoori M, Seki Y, Noura S, Ohue M, Yamada T, Ohigashi H, Ishikawa O (2009) Accumulation of excess visceral fat is a risk factor for pancreatic fistula formation after total gastrectomy. Ann Surg Oncol 16:1520–1525

    Article  PubMed  Google Scholar 

  37. Roh CK, Choi S, Seo WJ, Cho M, Choi YY, Son T, Hyung WJ, Kim HI (2020) Comparison of surgical outcomes between integrated robotic and conventional laparoscopic surgery for distal gastrectomy: a propensity score matching analysis. Sci Rep 10:485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kong SH, Kim TH, Huh YJ, Oh SY, Ahn HS, Park SY, Choi YS, Suh YS, Lee HJ, Yang HK (2017) A feasibility study and technical tips for the use of an articulating bipolar vessel sealer in da Vinci robot-assisted gastrectomy. J Laparoendosc Adv Surg Tech A 27:1172–1179

    Article  PubMed  Google Scholar 

  39. Kikuchi K, Suda K, Shibasaki S, Tanaka T, Uyama I (2021) Challenges in improving the minimal invasiveness of the surgical treatment for gastric cancer using robotic technology. Ann Gastroenterol Surg 5:604–613

    Article  PubMed  PubMed Central  Google Scholar 

  40. Han DS, Suh YS, Ahn HS, Kong SH, Lee HJ, Kim WH, Yang HK (2015) Comparison of surgical outcomes of robot-assisted and laparoscopy-assisted pylorus-preserving gastrectomy for gastric cancer: a propensity score matching analysis. Ann Surg Oncol 22:2323–2328

    Article  PubMed  Google Scholar 

  41. Ishikawa K, Matsumata T, Kishihara F, Fukuyama Y, Masuda H (2011) Laparoscopy-assisted distal gastrectomy for early gastric cancer with versus without prophylactic drainage. Surg Today 41:1049–1053

    Article  PubMed  Google Scholar 

  42. Shimoike N, Akagawa S, Yagi D, Sakaguchi M, Tokoro Y, Nakao E, Tamura T, Fujii Y, Mochida Y, Umemoto Y, Yoshimoto H, Kanaya S (2019) Laparoscopic gastrectomy with and without prophylactic drains in gastric cancer: a propensity score-matched analysis. World J Surg Oncol 17:144

    Article  PubMed  PubMed Central  Google Scholar 

  43. Japanese Gastric Cancer Association (2021) Japanese gastric cancer treatment guidelines 2018 (5th edition). Gastric Cancer 24:1–21

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Jayoun Kim at the Medical Research Collaborating Center of Seoul National University Hospital for statistical analysis and consultation.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

SHP, and HKY designed the study. SHP, SWB, KYJ, EHK, JHC, JHP, and WSC analyzed and interpreted data. SHP drafted the article. SHP, SHK, DJP, HJL and HKY critically revised the article for important intellectual content. All authors confirmed that the content has not been published elsewhere and does not overlap with or duplicate their published work.

Corresponding author

Correspondence to Han-Kwang Yang.

Ethics declarations

Disclosures

Shin-Hoo Park, Seong-Woo Bae, Kyoung-Yun Jeong, Eun-Hee Koo, Jong-Ho Choi, Ji-Hyeon Park, Seong-Ho Kong, Won-Sil Choi, Do Joong Park, Hyuk-Joon Lee, and Han-Kwang Yang have no conflicts of interest or financial ties to disclose.

Ethical approval

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1964 and later versions. Informed consent to be included in the study or equivalent was obtained from all patients.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 47 kb)

Supplementary file2 (PDF 1131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, SH., Bae, SW., Jeong, KY. et al. Clinical significance of lipid droplets formed in the peritoneal fluid after laparoscopic surgery for gastric cancer. Surg Endosc 36, 6095–6104 (2022). https://doi.org/10.1007/s00464-022-09173-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-022-09173-2

Keywords

Navigation