Skip to main content

Advertisement

Log in

Assessment of the aerosol distribution pattern of a single-port device for intraperitoneal administration of therapeutic substances

  • New Technology
  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

In the last 20 years, intraperitoneal chemotherapy (IPC) has been explored as a modality for the management of peritoneal metastases of gynecologic, gastrointestinal, and primary peritoneal tumors. Direct delivery of chemotherapeutic agents to the peritoneal cavity space has proved superior to systemic chemotherapy when evaluating characteristics such as drug concentration reached in the peritoneal space, penetration into peritoneal metastases, and chemotherapy-related toxicity. Traditionally, IPC is delivered by peritoneal lavage with a liquid solution. This form of delivery has limitations, including inhomogeneous intraperitoneal distribution and limited ability to penetrate tissues and metastatic nodules. An alternative mode of delivery is so-called pressurized intraperitoneal aerosol chemotherapy (PIPAC). Within this context, the present study sought to identify the pattern of spatial distribution of therapeutic solutions aerosolized into the peritoneal space using a single-port PIPAC device and ascertain whether the aerosolized method is superior to the traditional (liquid) mode of IPC delivery.

Methods

Analysis of the rate of intra-abdominal staining with aerosolized 2% silver nitrate in five porcine models.

Results

Assessment of differences in stain impregnation between the upper, middle, and lower abdomen did not reveal significant differences (p = 0.42). The median sum scores were 1 for the upper abdomen and 3 for the middle and lower abdomen.

Conclusions

Aerosolization does not reach all regions of the abdomen homogeneously. However, adequate exposure of the upper abdomen, mid-abdomen, and lower abdomen to chemotherapeutic agents can be achieved with PIPAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Markman M (2003) Intraperitoneal antineoplastic drug delivery: rationale and results. Lancet Oncol 4(5):277–283

    Article  CAS  Google Scholar 

  2. Solass W, Hetzel A, Nadiradze G, Sagynaliev E, Reymond MA (2012) Description of a novel approach for intraperitoneal drug delivery and the related device. Surg Endosc 26(7):1849–1855. https://doi.org/10.1007/s00464-012-2148-0

    Article  Google Scholar 

  3. Reymond MA, Hu B, Garcia A, Reck T, Kockerling F, Hess J, Morel P (2000) Feasibility of therapeutic pneumoperitoneum in a large animal model using a microvaporisator. Surg Endosc 14(1):51–55

    Article  CAS  Google Scholar 

  4. Alyami M, Gagniere J, Sgarbura O, Cabelguenne D, Villeneuve L, Pezet D, Quenet F, Glehen O, Bakrin N, Passot G (2017) Multicentric initial experience with the use of the pressurized intraperitoneal aerosol chemotherapy (PIPAC) in the management of unresectable peritoneal carcinomatosis. Eur J Surg Oncol 43(11):2178–2183. https://doi.org/10.1016/j.ejso.2017.09.010

    Article  PubMed  Google Scholar 

  5. Demtroder C, Solass W, Zieren J, Strumberg D, Giger-Pabst U, Reymond MA (2016) Pressurized intraperitoneal aerosol chemotherapy with oxaliplatin in colorectal peritoneal metastasis. Colorectal Dis 18(4):364–371. https://doi.org/10.1111/codi.13130

    Article  CAS  PubMed  Google Scholar 

  6. Tempfer CB, Rezniczek GA, Ende P, Solass W, Reymond MA (2015) Pressurized intraperitoneal aerosol chemotherapy with cisplatin and doxorubicin in women with peritoneal carcinomatosis: a cohort study. Anticancer Res 35(12):6723–6729

    CAS  PubMed  Google Scholar 

  7. Khosrawipour T, Khosrawipour V, Giger-Pabst U (2017) Pressurized intra peritoneal aerosol chemotherapy in patients suffering from peritoneal carcinomatosis of pancreatic adenocarcinoma. PLoS ONE 12(10):e0186709. https://doi.org/10.1371/journal.pone.0186709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Seitenfus R, Ferreira PRW, Santos GOD, Alves RJV, Kalil AN, Barros ED, Glehen O, Casagrande TAC, Bonin EA, Silva Junior EMD (2017) A prototype single-port device for pressurized intraperitoneal aerosol chemotherapy. Technical feasibility and local drug distribution. Acta Cir Bras 32(12):1056–1063. https://doi.org/10.1590/s0102-865020170120000007

    Article  PubMed  Google Scholar 

  9. Sampson JA (1931) Implantation peritoneal carcinomatosis of ovarian origin. Am J Pathol 7(5):423–444 (439)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Flessner MF (1996) Small-solute transport across specific peritoneal tissue surfaces in the rat. J Am Soc Nephrol 7(2):225–233

    CAS  PubMed  Google Scholar 

  11. Khosrawipour V, Khosrawipour T, Diaz-Carballo D, Forster E, Zieren J, Giger-Pabst U (2016) Exploring the spatial drug distribution pattern of pressurized intraperitoneal aerosol chemotherapy (PIPAC). Ann Surg Oncol 23(4):1220–1224. https://doi.org/10.1245/s10434-015-4954-9

    Article  PubMed  Google Scholar 

  12. Rubin BK (2010) Air and soul: the science and application of aerosol therapy. Respir Care 55(7):911–921

    PubMed  Google Scholar 

  13. Gohler D, Khosrawipour V, Khosrawipour T, Diaz-Carballo D, Falkenstein TA, Zieren J, Stintz M, Giger-Pabst U (2017) Technical description of the microinjection pump (MIP((R))) and granulometric characterization of the aerosol applied for pressurized intraperitoneal aerosol chemotherapy (PIPAC). Surg Endosc 31(4):1778–1784. https://doi.org/10.1007/s00464-016-5174-5

    Article  PubMed  Google Scholar 

  14. Bellendorf A, Khosrawipour V, Khosrawipour T, Siebigteroth S, Cohnen J, Diaz-Carballo D, Bockisch A, Zieren J, Giger-Pabst U (2018) Scintigraphic peritoneography reveals a non-uniform (99 m)Tc-Pertechnetat aerosol distribution pattern for pressurized intra-peritoneal aerosol chemotherapy (PIPAC) in a swine model. Surg Endosc 32(1):166–174. https://doi.org/10.1007/s00464-017-5652-4

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Seitenfus.

Ethics declarations

Disclosures

Drs. Seitenfus, Kalil, Barros, Glehen, and Mr. Ferreira hold patents on the BhioQap device used in this study. Mr. Ferreira is employed by Bhiosupply, which manufactures and distributes the device. The other authors (Drs. Zettler, dos Santos and Cereser Junior) report no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seitenfus, R., Kalil, A.N., de Barros, E.D. et al. Assessment of the aerosol distribution pattern of a single-port device for intraperitoneal administration of therapeutic substances. Surg Endosc 33, 3503–3510 (2019). https://doi.org/10.1007/s00464-019-07043-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-019-07043-y

Keywords

Navigation