Skip to main content
Log in

Combined in vivo and ex vivo analysis of mesh mechanics in a porcine hernia model

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

Hernia meshes exhibit variability in mechanical properties, and their mechanical match to tissue has not been comprehensively studied. We used an innovative imaging model of in vivo strain tracking and ex vivo mechanical analysis to assess effects of mesh properties on repaired abdominal walls in a porcine model. We hypothesized that meshes with dissimilar mechanical properties compared to native tissue would alter abdominal wall mechanics more than better-matched meshes.

Methods

Seven mini-pigs underwent ventral hernia creation and subsequent open repair with one of two heavyweight polypropylene meshes. Following mesh implantation with attached radio-opaque beads, fluoroscopic images were taken at insufflation pressures from 5 to 30 mmHg on postoperative days 0, 7, and 28. At 28 days, animals were euthanized and ex vivo mechanical testing performed on full-thickness samples across repaired abdominal walls. Testing was conducted on 13 mini-pig controls, and on meshes separately. Stiffness and anisotropy (the ratio of stiffness in the transverse versus craniocaudal directions) were assessed.

Results

3D reconstructions of repaired abdominal walls showed stretch patterns. As pressure increased, both meshes expanded, with no differences between groups. Over time, meshes contracted 17.65% (Mesh A) and 0.12% (Mesh B; p = 0.06). Mesh mechanics showed that Mesh A deviated from anisotropic native tissue more than Mesh B. Compared to native tissue, Mesh A was stiffer both transversely and craniocaudally. Explanted repaired abdominal walls of both treatment groups were stiffer than native tissue. Repaired tissue became less anisotropic over time, as mesh properties prevailed over native abdominal wall properties.

Conclusions

This technique assessed 3D stretch at the mesh level in vivo in a porcine model. While the abdominal wall expanded, mesh-ingrown areas contracted, potentially indicating stresses at mesh edges. Ex vivo mechanics demonstrate that repaired tissue adopts mesh properties, suggesting that a better-matched mesh could reduce changes to abdominal wall mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Poulose BK, Shelton J, Phillips S, Moore D, Nealon W, Penson D, Beck W, Holzman MD (2012) Epidemiology and cost of ventral hernia repair: making the case for hernia research. Hernia 16:179–183

    Article  CAS  PubMed  Google Scholar 

  2. Burger JW, Luijendijk RW, Hop WC, Halm JA, Verdaasdonk EG, Jeekel J (2004) Long-term follow-up of a randomized controlled trial of suture versus mesh repair of incisional hernia. Ann Surg 240:578–583 discussion 583–575

    PubMed  PubMed Central  Google Scholar 

  3. Klosterhalfen B, Klinge U (2013) Retrieval study at 623 human mesh explants made of polypropylene–impact of mesh class and indication for mesh removal on tissue reaction. J Biomed Mater Res B Appl Biomater 101:1393–1399

    Article  CAS  PubMed  Google Scholar 

  4. Cavallo JA, Greco SC, Liu J, Frisella MM, Deeken CR, Matthews BD (2015) Remodeling characteristics and biomechanical properties of a crosslinked versus a non-crosslinked porcine dermis scaffolds in a porcine model of ventral hernia repair. Hernia 19:207–218

    Article  CAS  PubMed  Google Scholar 

  5. Klosterhalfen B, Junge K, Hermanns B, Klinge U (2002) Influence of implantation interval on the long-term biocompatibility of surgical mesh. Br J Surg 89:1043–1048

    Article  CAS  PubMed  Google Scholar 

  6. Klinge U, Conze J, Limberg W, Brucker C, Ottinger AP, Schumpelick V (1996) Pathophysiology of the abdominal wall. Chirurg 67:229–233

    CAS  PubMed  Google Scholar 

  7. Zuvela M, Galun D, Djuric-Stefanovic A, Palibrk I, Petrovic M, Milicevic M (2014) Central rupture and bulging of low-weight polypropylene mesh following recurrent incisional sublay hernioplasty. Hernia 18:135–140

    Article  CAS  PubMed  Google Scholar 

  8. Langer C, Neufang T, Kley C, Liersch T, Becker H (2001) Central mesh recurrence after incisional hernia repair with Marlex–are the meshes strong enough? Hernia 5:164–167

    Article  CAS  PubMed  Google Scholar 

  9. Petro CC, Nahabet EH, Criss CN, Orenstein SB, von Recum HA, Novitsky YW, Rosen MJ (2015) Central failures of lightweight monofilament polyester mesh causing hernia recurrence: a cautionary note. Hernia 19:155–159

    Article  CAS  PubMed  Google Scholar 

  10. Lerdsirisopon S, Frisella MM, Matthews BD, Deeken CR (2011) Biomechanical evaluation of potential damage to hernia repair materials due to fixation with helical titanium tacks. Surg Endosc 25:3890–3897

    Article  PubMed  Google Scholar 

  11. Klinge U, Klosterhalfen B, Muller M, Ottinger AP, Schumpelick V (1998) Shrinking of polypropylene mesh in vivo: an experimental study in dogs. Eur J Surg 164:965–969

    Article  CAS  PubMed  Google Scholar 

  12. Klinge U, Klosterhalfen B, Muller M, Schumpelick V (1999) Foreign body reaction to meshes used for the repair of abdominal wall hernias. Eur J Surg 165:665–673

    Article  CAS  PubMed  Google Scholar 

  13. Hernandez-Gascon B, Pena E, Pascual G, Rodriguez M, Bellon JM, Calvo B (2012) Long-term anisotropic mechanical response of surgical meshes used to repair abdominal wall defects. J Mech Behav Biomed Mater 5:257–271

    Article  CAS  PubMed  Google Scholar 

  14. Hernández-Gascón B, Peña E, Melero H, Pascual G, Doblaré M, Ginebra MP, Bellón JM, Calvo B (2011) Mechanical behaviour of synthetic surgical meshes: finite element simulation of the herniated abdominal wall. Acta Biomater 7:3905–3913

    Article  PubMed  Google Scholar 

  15. Deeken CR, Melman L, Jenkins ED, Greco SC, Frisella MM, Matthews BD (2011) Histologic and biomechanical evaluation of crosslinked and non-crosslinked biologic meshes in a porcine model of ventral incisional hernia repair. J Am Coll Surg 212:880–888

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jenkins ED, Melman L, Deeken CR, Greco SC, Frisella MM, Matthews BD (2010) Evaluation of fenestrated and non-fenestrated biologic grafts in a porcine model of mature ventral incisional hernia repair. Hernia 14:599–610

    Article  CAS  PubMed  Google Scholar 

  17. Melman L, Jenkins ED, Hamilton NA, Bender LC, Brodt MD, Deeken CR, Greco SC, Frisella MM, Matthews BD (2011) Histologic and biomechanical evaluation of a novel macroporous polytetrafluoroethylene knit mesh compared to lightweight and heavyweight polypropylene mesh in a porcine model of ventral incisional hernia repair. Hernia 15:423–431

    Article  CAS  PubMed  Google Scholar 

  18. Melman L, Jenkins ED, Hamilton NA, Bender LC, Brodt MD, Deeken CR, Greco SC, Frisella MM, Matthews BD (2011) Early biocompatibility of crosslinked and non-crosslinked biologic meshes in a porcine model of ventral hernia repair. Hernia 15:157–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jenkins ED, Melman L, Deeken CR, Greco SC, Frisella MM, Matthews BD (2011) Biomechanical and histologic evaluation of fenestrated and nonfenestrated biologic mesh in a porcine model of ventral hernia repair. J Am Coll Surg 212:327–339

    Article  PubMed  PubMed Central  Google Scholar 

  20. Deeken CR, Thompson DM Jr, Castile RM, Lake SP (2014) Biaxial analysis of synthetic scaffolds for hernia repair demonstrates variability in mechanical anisotropy, non-linearity and hysteresis. J Mech Behav Biomed Mater 38:6–16

    Article  CAS  PubMed  Google Scholar 

  21. Kahan LG, Guertler C, Blatnik JA, Lake SP (2017) Validation of single c-arm fluoroscopic technique for measuring in vivo abdominal wall deformation. J Biomech Eng 139(8):084502

    Article  Google Scholar 

  22. Amini R, Voycheck CA, Debski RE (2014) A method for predicting collagen fiber realignment in non-planar tissue surfaces as applied to glenohumeral capsule during clinically relevant deformation. J Biomech Eng 136:031003

    Article  PubMed  Google Scholar 

  23. Legland D (2009) geom3d. MATLAB Central File Exchange

  24. Podwojewski F, Ottenio M, Beillas P, Guerin G, Turquier F, Mitton D (2013) Mechanical response of animal abdominal walls in vitro: evaluation of the influence of a hernia defect and a repair with a mesh implanted intraperitoneally. J Biomech 46:561–566

    Article  CAS  PubMed  Google Scholar 

  25. Podwojewski F, Ottenio M, Beillas P, Guerin G, Turquier F, Mitton D (2014) Mechanical response of human abdominal walls ex vivo: effect of an incisional hernia and a mesh repair. J Mech Behav Biomed Mater 38:126–133

    Article  CAS  PubMed  Google Scholar 

  26. Tomaszewska A, Lubowiecka I, Szymczak C, Smietanski M, Meronk B, Klosowski P, Bury K (2013) Physical and mathematical modelling of implant-fascia system in order to improve laparoscopic repair of ventral hernia. Clin Biomech 28:743–751

    Article  CAS  Google Scholar 

  27. Szepietowska K, Lubowiecka I (2013) Mechanical behaviour of the implant used in human hernia repair under physiological loads. Acta Bioeng Biomech 15:89–96

    PubMed  Google Scholar 

  28. Martins P, Pena E, Jorge RM, Santos A, Santos L, Mascarenhas T, Calvo B (2012) Mechanical characterization and constitutive modelling of the damage process in rectus sheath. J Mech Behav Biomed Mater 8:111–122

    Article  CAS  PubMed  Google Scholar 

  29. Hernandez-Gascon B, Mena A, Pena E, Pascual G, Bellon JM, Calvo B (2013) Understanding the passive mechanical behavior of the human abdominal wall. Ann Biomed Eng 41:433–444

    Article  CAS  PubMed  Google Scholar 

  30. Forstemann T, Trzewik J, Holste J, Batke B, Konerding MA, Wolloscheck T, Hartung C (2011) Forces and deformations of the abdominal wall–a mechanical and geometrical approach to the linea alba. J Biomech 44:600–606

    Article  CAS  PubMed  Google Scholar 

  31. Welty G, Klinge U, Klosterhalfen B, Kasperk R, Schumpelick V (2001) Functional impairment and complaints following incisional hernia repair with different polypropylene meshes. Hernia 5:142–147

    Article  CAS  PubMed  Google Scholar 

  32. Klinge U, Müller M, Brücker C, Schumpelick V (1998) Application of three-dimensional stereography to assess abdominal wall mobility. Hernia 2:11–14

    Article  Google Scholar 

  33. Stumpf M, Klinge U, Tittel A, Brucker C, Schumpelick V (2001) The surgical trauma of abdominal wall incision. A comparison of laparoscopic vs open surgery with three-dimensional stereography. Surg Endosc 15:1147–1149

    Article  CAS  PubMed  Google Scholar 

  34. Müller M, Klinge U, Conze J, Schumpelick V (1998) Abdominal wall compliance after Marlex® mesh implantation for incisional hernia repair. Hernia 2:113–117

    Article  Google Scholar 

  35. Konerding MA, Bohn M, Wolloscheck T, Batke B, Holste JL, Wohlert S, Trzewik J, Forstemann T, Hartung C (2011) Maximum forces acting on the abdominal wall: experimental validation of a theoretical modeling in a human cadaver study. Med Eng Phys 33:789–792

    Article  PubMed  Google Scholar 

  36. van Ramshorst GH, Salih M, Hop WC, van Waes OJ, Kleinrensink GJ, Goossens RH, Lange JF (2011) Noninvasive assessment of intra-abdominal pressure by measurement of abdominal wall tension. J Surg Res 171:240–244

    Article  PubMed  Google Scholar 

  37. Smietanski M, Bury K, Tomaszewska A, Lubowiecka I, Szymczak C (2012) Biomechanics of the front abdominal wall as a potential factor leading to recurrence with laparoscopic ventral hernia repair. Surg Endosc 26:1461–1467

    Article  PubMed  Google Scholar 

  38. Szymczak C, Lubowiecka I, Tomaszewska A, Smietanski M (2012) Investigation of abdomen surface deformation due to life excitation: implications for implant selection and orientation in laparoscopic ventral hernia repair. Clin Biomech 27:105–110

    Article  Google Scholar 

  39. Song C, Alijani A, Frank T, Hanna G, Cuschieri A (2006) Elasticity of the living abdominal wall in laparoscopic surgery. J Biomech 39:587–591

    Article  PubMed  Google Scholar 

  40. Song C, Alijani A, Frank T, Hanna GB, Cuschieri A (2006) Mechanical properties of the human abdominal wall measured in vivo during insufflation for laparoscopic surgery. Surg Endosc 20:987–990

    Article  CAS  PubMed  Google Scholar 

  41. Lyons M, Winter DC, Simms CK (2014) Mechanical characterisation of porcine rectus sheath under uniaxial and biaxial tension. J Biomech 47:1876–1884

    Article  PubMed  Google Scholar 

  42. Hernandez B, Pena E, Pascual G, Rodriguez M, Calvo B, Doblare M, Bellon JM (2011) Mechanical and histological characterization of the abdominal muscle. A previous step to modelling hernia surgery. J Mech Behav Biomed Mater 4:392–404

    Article  CAS  PubMed  Google Scholar 

  43. Tran D, Mitton D, Voirin D, Turquier F, Beillas P (2014) Contribution of the skin, rectus abdominis and their sheaths to the structural response of the abdominal wall ex vivo. J Biomech 47:3056–3063

    Article  CAS  PubMed  Google Scholar 

  44. Grassel D, Prescher A, Fitzek S, Keyserlingk DG, Axer H (2005) Anisotropy of human linea alba: a biomechanical study. J Surg Res 124:118–125

    Article  PubMed  Google Scholar 

  45. Hollinsky C, Sandberg S (2007) Measurement of the tensile strength of the ventral abdominal wall in comparison with scar tissue. Clin Biomech 22:88–92

    Article  CAS  Google Scholar 

  46. Kureshi A, Vaiude P, Nazhat SN, Petrie A, Brown RA (2008) Matrix mechanical properties of transversalis fascia in inguinal herniation as a model for tissue expansion. J Biomech 41:3462–3468

    Article  PubMed  Google Scholar 

  47. Kirilova M, Stoytchev S, Pashkouleva D, Kavardzhikov V (2011) Experimental study of the mechanical properties of human abdominal fascia. Med Eng Phys 33:1–6

    Article  PubMed  Google Scholar 

  48. Ben Abdelounis H, Nicolle S, Ottenio M, Beillas P, Mitton D (2013) Effect of two loading rates on the elasticity of the human anterior rectus sheath. J Mech Behav Biomed Mater 20:1–5

    Article  CAS  PubMed  Google Scholar 

  49. Junge K, Klinge U, Prescher A, Giboni P, Niewiera M, Schumpelick V (2001) Elasticity of the anterior abdominal wall and impact for reparation of incisional hernias using mesh implants. Hernia 5:113–118

    Article  CAS  PubMed  Google Scholar 

  50. Axer H, Keyserlingk DG, Prescher A (2001) Collagen fibers in linea alba and rectus sheaths. I. General scheme and morphological aspects. J Surg Res 96:127–134

    Article  CAS  PubMed  Google Scholar 

  51. Rath AM, Zhang J, Chevrel JP (1997) The sheath of the rectus abdominis muscle: an anatomical and biomechanical study. Hernia 1:139–142

    Article  Google Scholar 

  52. Sickle KR, Baghai M, Mattar SG, Bowers SP, Ramaswamy A, Swafford V, Smith CD, Ramshaw BJ (2005) What happens to the rectus abdominus fascia after laparoscopic ventral hernia repair? Hernia 9:358–362

    Article  PubMed  Google Scholar 

  53. Schoenmaeckers EJ, van der Valk SB, van den Hout HW, Raymakers JF, Rakic S (2009) Computed tomographic measurements of mesh shrinkage after laparoscopic ventral incisional hernia repair with an expanded polytetrafluoroethylene mesh. Surg Endosc 23:1620–1623

    Article  PubMed  Google Scholar 

  54. Kuehnert N, Kraemer NA, Otto J, Donker HC, Slabu I, Baumann M, Kuhl CK, Klinge U (2012) In vivo MRI visualization of mesh shrinkage using surgical implants loaded with superparamagnetic iron oxides. Surg Endosc 26:1468–1475

    Article  PubMed  Google Scholar 

  55. Hansen NL, Barabasch A, Distelmaier M, Ciritsis A, Kuehnert N, Otto J, Conze J, Klinge U, Hilgers RD, Kuhl CK, Kraemer NA (2013) First in-human magnetic resonance visualization of surgical mesh implants for inguinal hernia treatment. Invest Radiol 48:770–778

    Article  CAS  PubMed  Google Scholar 

  56. Anjum H, Bokhari SG, Khan MA, Awais M, Mughal ZU, Shahzad HK, Ijaz F, Siddiqui MI, Khan IU, Chaudhry AS, Akhtar R, Aslam S, Akbar H, Asif M, Maan MK, Khan MA, Noor A, Khan WA, Ullah A, Hayat MA (2016) Comparative efficacy of Prolene and Prolene-Vicryl composite mesh for experimental ventral hernia repair in dogs. Iran J Vet Res 17:78–83

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Est S, Roen M, Chi T, Simien A, Castile RM, Thompson DM Jr, Blatnik JA, Deeken CR, Lake SP (2017) Multi-directional mechanical analysis of synthetic scaffolds for hernia repair. J Mech Behav Biomed Mater 71:43–53

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a research Grant from the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES).

Funding

Society of American Gastrointestinal and Endoscopic Surgeons Award Number: 4185-81974, Recipient: L Michael Brunt, MD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Blatnik.

Ethics declarations

Disclosures

Jeffrey A. Blatnik is a consultant for Bard-Davol, Inc., Medtronic, Inc., Colorado Therapeutics and Intuitive Surgical, Inc. He also receives Grant support from Medtronic, Inc and Colorado Therapeutics. L. Michael Brunt receives research support from Karl Storz Endoscopy and W. L. Gore & Associates, Inc. Spencer P. Lake is a consultant for Covalent Bio, LLC. Lindsey G Kahan, Jared M McAllister, Wen Hui Tan, Jennifer Yu and Dominic Thompson have no conflicts of interest or financial ties to disclose.

Additional information

Presented at the SAGES 2017 Annual Meeting, March 22–25, 2017, Houston, TX.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahan, L.G., Lake, S.P., McAllister, J.M. et al. Combined in vivo and ex vivo analysis of mesh mechanics in a porcine hernia model. Surg Endosc 32, 820–830 (2018). https://doi.org/10.1007/s00464-017-5749-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-017-5749-9

Keywords

Navigation