Skip to main content

Advertisement

Log in

Evaluation of fenestrated and non-fenestrated biologic grafts in a porcine model of mature ventral incisional hernia repair

  • Original Article
  • Published:
Hernia Aims and scope Submit manuscript

Abstract

Introduction

The purpose of this study is to compare the tissue incorporation of a novel fenestrated and non-fenestrated crosslinked porcine dermal matrix (CPDM) (CollaMend™, Davol Inc., Warwick, RI) in a porcine model of ventral hernia repair.

Methods

Bilateral abdominal wall defects were created in 12 Yucatan minipigs and repaired with a preperitoneal or intraperitoneal technique 21 days after hernia creation. Animals were randomized to fenestrated or non-fenestrated CPDM for n = 6 pieces of each graft in the preperitoneal or intraperitoneal location. All animals were sacrificed at 1 month. Adhesion characteristics and graft contraction/growth were measured by the Garrard adhesion grading scale and transparent grid overlay. Histological analysis of hematoxylin and eosin (H&E)-stained slides was performed to assess graft incorporation. Tissue incorporation strength was measured by a T-peel tensile test. The strength of explanted CPDM alone and de novo CPDM was measured by a uniaxial tensile test using a tensiometer (Instron, Norwood, MA) at a displacement rate of 0.42 mm/s. Statistical significance (P < 0.05) was determined for histological analysis using a Kruskal–Wallis non-parametric test with a Bonferroni correction, and for all other analyses using a two-way analysis of variance (ANOVA) with a Bonferroni post-test or a Kruskal–Wallis non-parametric test with a Dunn’s post-test.

Results

Intraperitoneal placement of fenestrated CPDM resulted in a significantly higher area of adhesions and adhesion score compared to the preperitoneal placement of fenestrated CPDM (P < 0.05). For both preperitoneal and intraperitoneal placement, histological findings demonstrated greater incorporation of the graft due to the fenestrations. No significant differences were detected in the uniaxial tensile strengths of the graft materials alone, either due to the graft type (non-fenestrated vs. fenestrated) or due to the placement location (preperitoneal vs. intraperitoneal). The incorporation strength (T-peel force) was significantly greater for fenestrated compared to non-fenestrated CPDM when placed in the preperitoneal location (P < 0.01). The incorporation strength was also significantly greater for fenestrated CPDM placed in the preperitoneal location compared to fenestrated CPDM placed in the intraperitoneal location (P < 0.05).

Conclusions

Fenestrations in CPDM result in greater tissue incorporation strength and lower adhesion area and score when placed in the preperitoneal location. Fenestrations in CPDM allow for greater tissue incorporation without accelerating graft degradation. Fenestrations may be placed in CPDM while still allowing adequate graft strength for intraperitoneal and preperitoneal hernia repairs at 1 month in a porcine model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Stone HH, Fabian TC, Turkleson ML, Jurkiewicz MJ (1981) Management of acute full-thickness losses of the abdominal wall. Ann Surg 193(5):612–618

    Article  CAS  PubMed  Google Scholar 

  2. Mathes SJ, Stone HH (1975) Acute traumatic losses of abdominal wall substance. J Trauma 15(5):386–391

    Article  CAS  PubMed  Google Scholar 

  3. Szczerba SR, Dumanian GA (2003) Definitive surgical treatment of infected or exposed ventral hernia mesh. Ann Surg 237(3):437–441

    Article  PubMed  Google Scholar 

  4. Mathes SJ, Steinwald PM, Foster RD, Hoffman WY, Anthony JP (2000) Complex abdominal wall reconstruction: a comparison of flap and mesh closure. Ann Surg 232(4):586–596

    Article  CAS  PubMed  Google Scholar 

  5. Parker DM, Armstrong PJ, Frizzi JD, North JH Jr (2006) Porcine dermal collagen (Permacol) for abdominal wall reconstruction. Curr Surg 63(4):255–258

    Article  PubMed  Google Scholar 

  6. Trabuco EC, Klingele CJ, Gebhart JB (2007) Xenograft use in reconstructive pelvic surgery: a review of the literature. Int Urogynecol J Pelvic Floor Dysfunct 18(5):555–563

    Article  PubMed  Google Scholar 

  7. Badylak S, Kokini K, Tullius B, Simmons-Byrd A, Morff R (2002) Morphologic study of small intestinal submucosa as a body wall repair device. J Surg Res 103:190–202

    Article  PubMed  Google Scholar 

  8. Gandhi S, Kubba LM, Abramov Y, Botros SM, Goldberg RP, Victor TA, Sand PK (2005) Histopathologic changes of porcine dermis xenografts for transvaginal suburethral slings. Am J Obstet Gynecol 192:1643–1648

    Article  PubMed  Google Scholar 

  9. Record RD, Hillegonds D, Simmons C, Tullius R, Rickey FA, Elmore D, Badylak SF (2001) In vivo degradation of 14C-labeled small intestinal submucosa (SIS) when used for urinary bladder repair. Biomaterials 22(19):2653–2659

    Article  CAS  PubMed  Google Scholar 

  10. Abolhoda A, Yu S, Oyarzun JR, McCormick JR, Bogden JD, Gabbay S (1996) Calcification of bovine pericardium: glutaraldehyde versus No-React biomodification. Ann Thorac Surg 62:169–174

    Article  CAS  PubMed  Google Scholar 

  11. Courtman DW, Errett BF, Wilson GJ (2001) The role of crosslinking in modification of the immune response elicited against xenogenic vascular acellular matrices. J Biomed Mater Res 55:576–586

    Article  CAS  PubMed  Google Scholar 

  12. Taylor DF (1972) Porosity in silver-tin amalgams. J Biomed Mater Res 6:289–304

    Article  CAS  PubMed  Google Scholar 

  13. Wilkins ES (1991) Tissue reaction to intraperitoneally implanted catheter materials. J Biomed Eng 13:173–175

    Article  CAS  PubMed  Google Scholar 

  14. Wake MC, Patrick CW Jr, Mikos AG (1994) Pore morphology effects on the fibrovascular tissue growth in porous polymer substrates. Cell Transplant 3:339–343

    CAS  PubMed  Google Scholar 

  15. Bezuidenhout D, Davies N, Zilla P (2002) Effect of well defined dodecahedral porosity on inflammation and angiogenesis. ASAIOJ 48:465–471

    Article  CAS  Google Scholar 

  16. Matthews BD, Pratt BL, Pollinger HS, Backus CL, Kercher KW, Sing RF, Heniford BT (2003) Assessment of adhesion formation to intra-abdominal polypropylene mesh and polytetrafluoroethylene mesh. J Surg Res 114:126–132

    Article  CAS  PubMed  Google Scholar 

  17. Otterburn D, Losken A (2009) The use of porcine acellular dermal material for TRAM flap donor-site closure. Plast Reconstr Surg 123(2):74e–76e

    Article  CAS  PubMed  Google Scholar 

  18. Garrard CL, Clements RH, Nanney L, Davidson JM, Richards WO (1999) Adhesion formation is reduced after laparoscopic surgery. Surg Endosc 13(1):10–13

    Article  CAS  PubMed  Google Scholar 

  19. Valentin JE, Badylak JS, McCabe GP, Badylak SF (2006) Extracellular matrix bioscaffolds for orthopaedic applications. A comparative histologic study. J Bone Joint Surg Am 88(12):2673–2686

    Article  PubMed  Google Scholar 

  20. Cobb WS, Harris JB, Lokey JS, McGill ES, Klove KL (2003) Incisional herniorrhaphy with intraperitoneal composite mesh: a report of 95 cases. Am Surg 69(9):784–787

    PubMed  Google Scholar 

  21. Voyles CR, Richardson JD, Bland KI, Tobin GR, Flint LM, Polk HC Jr (1981) Emergency abdominal wall reconstruction with polypropylene mesh: short-term benefits versus long-term complications. Ann Surg 194(2):219–223

    Article  CAS  PubMed  Google Scholar 

  22. Karakousis CP, Volpe C, Tanski J, Colby ED, Winston J, Driscoll DL (1995) Use of a mesh for musculoaponeurotic defects of the abdominal wall in cancer surgery and the risk of bowel fistulas. J Am Coll Surg 181(1):11–16

    CAS  PubMed  Google Scholar 

  23. Mayberry JC, Burgess EA, Goldman RK, Pearson TE, Brand D, Mullins RJ (2004) Enterocutaneous fistula and ventral hernia after absorbable mesh prosthesis closure for trauma: the plain truth. J Trauma 57(1):157–162 (discussion 163–163)

    Article  PubMed  Google Scholar 

  24. Tremblay LN, Feliciano DV, Schmidt J, Cava RA, Tchorz KM, Ingram WL, Salomone JP, Nicholas JM, Rozycki GS (2001) Skin only or silo closure in the critically ill patient with an open abdomen. Am J Surg 182(6):670–675

    Article  CAS  PubMed  Google Scholar 

  25. Hiles M, Record Ritchie RD, Altizer AM (2009) Are biologic grafts effective for hernia repair?: a systematic review of the literature. Surg Innov 16(1):26–37

    Article  PubMed  Google Scholar 

  26. Diaz JJ Jr, Conquest AM, Ferzoco SJ, Vargo D, Miller P, Wu YC, Donahue R (2009) Multi-institutional experience using human acellular dermal matrix for ventral hernia repair in a compromised surgical field. Arch Surg 144(3):209–215

    Article  PubMed  Google Scholar 

  27. Cobb GA, Shaffer J (2005) Cross-linked acellular porcine dermal collagen implant in laparoscopic ventral hernia repair: case-controlled study of operative variables and early complications. Int Surg 90(3 Suppl):S24–S29

    PubMed  Google Scholar 

  28. Misra S, Raj PK, Tarr SM, Treat RC (2008) Results of AlloDerm use in abdominal hernia repair. Hernia 12(3):247–250

    Article  CAS  PubMed  Google Scholar 

  29. Sandor M, Xu H, Connor J, Lombardi J, Harper JR, Silverman RP, McQuillan DJ (2008) Host response to implanted porcine-derived biologic materials in a primate model of abdominal wall repair. Tissue Eng Part A 14(12):2021–2031

    Article  CAS  PubMed  Google Scholar 

  30. Klinge U, Klosterhalfen B, Conze J, Limberg W, Obolenski B, Ottinger AP, Schumpelick V (1998) Modified mesh for hernia repair that is adapted to the physiology of the abdominal wall. Eur J Surg 164:951–960

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the efforts of Michael Brodt M.S., Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA, for the mechanical testing of the 1 month uniaxial and T-peel samples. Experiments were funded by a research grant from Davol Inc. (Warwick, RI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. D. Matthews.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jenkins, E.D., Melman, L., Deeken, C.R. et al. Evaluation of fenestrated and non-fenestrated biologic grafts in a porcine model of mature ventral incisional hernia repair. Hernia 14, 599–610 (2010). https://doi.org/10.1007/s10029-010-0684-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10029-010-0684-x

Keywords

Navigation