Skip to main content

Advertisement

Log in

Modification of Masticatory Rhythmicity Leading to the Initiation of the Swallowing Reflex in Humans

  • Original Article
  • Published:
Dysphagia Aims and scope Submit manuscript

Abstract

Modification of movements by proprioceptive feedback during mastication has an important role in shifting from the oral to the pharyngeal phase of swallowing. The aim of this study was to investigate the kinetics of masticatory muscles throughout a sequence of oropharyngeal swallowing and to present a hypothetical model of the involvement of the nervous system in the transition from mastication to the swallowing reflex. Surface electromyographic signals were recorded from the jaw-closing masseter muscles and the jaw-opening suprahyoid muscle group when a piece of bread (3–5 g) was ingested. Participants were not provided any additional instruction regarding how to chew and swallow. In the final stage of mastication, compared with other stages of mastication, the duration between sequential peak times of rhythmic activity of the masseter muscles was prolonged. Electromyography revealed no significant change in the suprahyoid muscle group. Accordingly, contraction of the jaw-closing muscles and the jaw-opening muscles altered from out-of-phase to in-phase. We have presented a hypothetical model based on the results of the present study, in which mastication shifts to the swallowing reflex when feed-forward inputs from rhythm generators for the jaw-closing and the jaw-opening muscles converge onto an assumed “convertor” neuron group concurrently. This model should contribute to understanding the pathophysiology of dysphagia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hiiemae KM, Crompton AW. Mastication, food transport, and swallowing. In: Hildebrand M, Bramble DM, Liem KF, Wake DB, editors. Functional vertebrate morphology. Cambridge: The Belknap Press of Harvard University Press; 1985. p. 262–90.

    Google Scholar 

  2. Palmer JB, Rudin NJ, Lara G, Crompton AW. Coordination of mastication and swallowing. Dysphagia. 1992;7:187–200. https://doi.org/10.1007/BF02493469.

    Article  PubMed  CAS  Google Scholar 

  3. Laitman JT, Reidenberg JS. Comparative and developmental anatomy of laryngeal position. In: Bailey BJ, editor. Head and Neck Surgery-Otolaryngology, vol. One. Philadelphia: J. B. Lippincott Company; 1993. p. 36–43.

    Google Scholar 

  4. Inoue T, Kato T, Masuda Y, Nakamura T, Kawamura Y, Morimoto T. Modifications of masticatory behavior after trigeminal deafferentation in the rabbit. Exp Brain Res. 1989;74:579–91.

    Article  PubMed  CAS  Google Scholar 

  5. Hidaka O, Morimoto Y, Masuda T, Kato T, Matsuo R, Inoue T, Kobayashi M, Takada K. Regulation of masticatory force during cortically induced rhythmic jaw movements in the anesthetized rabbit. J Neurophysiol. 1997;77:3168–79.

    Article  PubMed  CAS  Google Scholar 

  6. Hidaka O, Morimoto Y, Kato T, Masuda T, Inoue T, Takada K. Behavior of jaw muscle spindle afferents during cortically induced rhythmic jaw movements in the anesthetized rabbit. J Neurophysiol. 1999;77:3168–79.

    Article  Google Scholar 

  7. Lund JP, Kolta A. Generation of the central masticatory pattern and its modification by sensory feedback. Dysphagia. 2006;21:167–74. https://doi.org/10.1007/s00455-006-9027-6.

    Article  PubMed  Google Scholar 

  8. Türker KS, Sowman PF, Tuncer M, Tuker KJ, Brinkworth RSA. The role of periodontal mechanoreceptors in mastication. Arch Oral Biol. 2007;52:361–4. https://doi.org/10.1016/j.archoralbio.2006.11.014.

    Article  PubMed  Google Scholar 

  9. Holman SD, Waranch DR, Campbell-Malone R, Ding P, Gierbolini-Norat EM, Lukasik SL, German RZ. Sucking and swallowing rates after palatal anesthesia: an electromyographic study in infant pigs. J Neurophysiol. 2013;110:387–96. https://doi.org/10.1152/jn.00064.2013.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Holman SD, Campbell-Malone R, Ding P, Gierbolini-Norat EM, Lukasik SL, Waranch DR, German RZ. Swallowing kinematics and airway protection after palatal local anesthesia in infant pigs. Laryngoscope. 2014;124:436–45. https://doi.org/10.1002/lary.24204.

    Article  PubMed  Google Scholar 

  11. Meng Y, Uchida K, Sato T, Yamamura K, Yamada Y. Difference in the burst patterns of digastric and mylohyoid activities during feeding in the freely behaving rabbit. Dysphagia. 1999;14:78–84. https://doi.org/10.1007/PL00009591.

    Article  PubMed  CAS  Google Scholar 

  12. Thexton AJ, Crompton AW, Owerkowicz T, German RZ. Impact of rhythmic oral activity on the timing of muscle activation in the swallow of the decerebrate pig. J Neurophysiol. 2009;101:1386–93. https://doi.org/10.1152/jn.90847.2008.

    Article  PubMed  Google Scholar 

  13. Peyron M-A, Gierczynski I, Hartmann C, Loret C, Dardevet D, Martin N, Woda A. Role of physical bolus properties as sensory inputs in the trigger of swallowing. PLoS ONE. 2011;6:e21167. https://doi.org/10.1371/journal.pone.0021167.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Takeda H, Saitoh K. Impact of proprioception during the oral phase on initiating the swallowing reflex. Laryngoscope. 2016;126:1595–9. https://doi.org/10.1002/lary.25638.

    Article  PubMed  Google Scholar 

  15. Sherrington CS. Flexion-reflex of the limb, crossed extension reflex, and reflex stepping and standing. J Physiol (Lond). 1910;40:28–121.

    Article  CAS  Google Scholar 

  16. Grillner S, Rossignol S. On the initiation of the swing phase of locomotion in chronic spinal cats. Brain Res. 1978;146:269–77.

    Article  PubMed  CAS  Google Scholar 

  17. Grillner S, Zangger P. The effect of dorsal root transection on the efferent motor pattern in the cat’s hindlimb during locomotion. Acta Physiol Scand. 1984;120:393–405. https://doi.org/10.1111/j.1748-1716.1984.tb07400.x.

    Article  PubMed  CAS  Google Scholar 

  18. Hiebert GW, Whelan PJ, Prochazka A, Pearson KG. Contribution of hindlimb flexor muscle afferents to the timing of phase transitions in the cat step cycle. J Neurophysiol. 1996;75:1126–37.

    Article  PubMed  CAS  Google Scholar 

  19. Luschei ES, Goodwin GM. Patterns of mandibular movement and jaw muscle activity during mastication in the monkey. J Nerophysiol. 1974;37:954–66.

    Article  CAS  Google Scholar 

  20. Goodwin GM, Luschei ES. Discharge of spindle afferents from jaw-closing muscle during chewing in alert monkeys. J Neuophysiol. 1975;38:560–71.

    Article  CAS  Google Scholar 

  21. Plesh O, Bishop B, McCall WD. Patterns of jaw muscle activity during voluntary chewing. J Oral Rehabil. 1996;23:262–9.

    Article  PubMed  CAS  Google Scholar 

  22. Dellow PG, Lund JP. Evidence for central timing of rhythmical mastication. J Physiol. 1971;215:1–13. https://doi.org/10.1113/jphysiol.1971.sp009454.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Nakamura Y, Katakura N. Generation of masticatory rhythm in the brainstem. Neuosci Res. 1995;23:1–19.

    Article  CAS  Google Scholar 

  24. Thexton AJ, Karen M, Hiiemae M, Crompton AW. Food consistency and bite size as regulators of jaw movement during feeding in the cat. J Neurophysiol. 1980;44:456–74.

    Article  PubMed  CAS  Google Scholar 

  25. Peyron M-A, Lassauzay C, Woda A. Effects of increased hardness on jaw movement and muscle activity during chewing of visco-elastic model foods. Exp Brain Res. 2002;142:41–51. https://doi.org/10.1007/s00221-001-0916-5.

    Article  PubMed  CAS  Google Scholar 

  26. Kohyama K, Gao Z, Ishihara S, Funami T, Nishinari K. Electromyography analysis of natural mastication behavior using varying mouthful quantities of two types of gels. Physiol & Behav. 2016;161:174–82. https://doi.org/10.1016/j.physbeh.2016.04.030.

    Article  CAS  Google Scholar 

  27. Li Y-Q, Takada M, Kaneko T, Mizuno N. Premotor neurons for trigeminal motor nucleus neurons innervating the jaw-closing and jaw-opening muscles: differential distribution in the lower brainstem of the rat. J Comp Neurol. 1995;356:563–79. https://doi.org/10.1002/cne.903560407.

    Article  PubMed  CAS  Google Scholar 

  28. Dmytruk RJ. Neuromuscular spindles and depressor masticatory muscles of monkey. Am J Anat. 1974;141:147–53. https://doi.org/10.1002/aja.1001410111.

    Article  PubMed  CAS  Google Scholar 

  29. Lennartsson B. Number and distribution of muscle spindles in the masticatory muscles of the rat. J Anat. 1980;130:279–88.

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Saverino D, De Santanna A, Simone R, Cervioni S, Cattrysse E, Testa M: Observational study on the occurrence of muscle spindles in human digastric and mylohyoideus muscles. BioMed Res Int. 2014: Article ID 294263, 2014. 10.1155/2014/294263

  31. Lamkadem M, Zoungrana OR, Amri M, Car A, Roman C. Stimulation of the chewing area of the cerebral cortex induces inhibitory effects upon swallowing in sheep. Brain Res. 1999;832:97–111.

    Article  PubMed  CAS  Google Scholar 

  32. Zoungrana OR, Lamkadem M, Amri M, Car A, Roman C. Effects of lingual nerve afferents on swallowing in sheep. Exp Brain Res. 2000;132:500–19.

    Article  PubMed  CAS  Google Scholar 

  33. Morimoto T, Inoue T, Masuda Y, Nagashima T. Sensory components facilitating jaw-closing muscle activities in the rabbit. Exp Brain Res. 1989;76:424–40.

    Article  PubMed  CAS  Google Scholar 

  34. German RZ, Crompton AW, Gould FDH. Animal models for dysphagia studies: what have we learnt so far. Dysphagia. 2017;32:73–7. https://doi.org/10.1007/s00455-016-9778-7.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Seiya Himeno, Ryoji Tawara, and Ryota Iwashita for their assistance in data collection. This study was supported by The Mitsubishi Foundation [Grant number 24319] and JSPS KAKENHI [Grant number 16K11237] to K.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuya Saitoh PhD, MD.

Ethics declarations

Conflict of interest

None of the authors have potential conflicts of interest to disclose.

Additional information

This work was done at the Kumamoto University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoneda, M., Saitoh, K. Modification of Masticatory Rhythmicity Leading to the Initiation of the Swallowing Reflex in Humans. Dysphagia 33, 358–368 (2018). https://doi.org/10.1007/s00455-017-9860-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00455-017-9860-9

Keywords

Navigation