Skip to main content
Log in

Evaluating the Tongue-Hold Maneuver Using High-Resolution Manometry and Electromyography

  • Original Article
  • Published:
Dysphagia Aims and scope Submit manuscript

An Erratum to this article was published on 28 August 2014

Abstract

The tongue-hold maneuver is a widely used clinical technique designed to increase posterior pharyngeal wall movement in individuals with dysphagia. It is hypothesized that the tongue-hold maneuver results in increased contraction of the superior pharyngeal constrictor. However, an electromyographic study of the pharynx and tongue during the tongue-hold is still needed to understand whether and how swallow muscle activity and pressure may change with this maneuver. We tested eight healthy young participants using simultaneous intramuscular electromyography with high-resolution manometry during three task conditions including (a) saliva swallow without maneuver, (b) saliva swallow with the tongue tip at the lip, and (c) saliva swallow during the tongue-hold maneuver. We tested the hypothesis that tongue and pharyngeal muscle activity would increase during the experimental tasks, but that pharyngeal pressure would remain relatively unchanged. We found that the pre-swallow magnitude of tongue, pharyngeal constrictor, and cricopharyngeus muscle activity increased. During the swallow, the magnitude and duration of tongue and pharyngeal constrictor muscle activity each increased. However, manometric pressures and durations remained unchanged. These results suggest that increased superior pharyngeal constrictor activity may serve to maintain relatively stable pharyngeal pressures in the absence of posterior tongue movement. Thus, the tongue-hold maneuver may be a relatively simple but robust example of how the medullary swallow center is equipped to dynamically coordinate actions between tongue and pharynx. Our findings emphasize the need for combined modality swallow assessment to include high-resolution manometry and intramuscular electromyography to evaluate the potential benefit of the tongue-hold maneuver for clinical populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fujiu M, Logemann JA. Effect of a tongue-holding maneuver on posterior pharyngeal wall movement during deglutition. Am J Speech Lang Pathol. 1996;5:23–30.

    Article  Google Scholar 

  2. Kokawa T, Saigusa H, Aino I, Matsuoka C, Nakamura T, Tanuma K, Yamashita K, Niimi S. Physiological studies of retrusive movements of the human tongue. J Voice. 2006;20:414–22. doi:10.1016/j.jvoice.2005.08.004.

    Article  PubMed  Google Scholar 

  3. Saigusa H, Yamashita K, Tanuma K, Saigusa M, Niimi S. Morphological studies for retrusive movement of the human adult tongue. Clin Anat. 2004;17:93–8. doi:10.1002/ca.10156.

    Article  PubMed  Google Scholar 

  4. Zemlin WR. Speech and hearing science: anatomy and physiology. 3rd ed. Englewood Cliffs: Prentice Hall; 1988.

    Google Scholar 

  5. Takemoto H. Morphological analyses of the human tongue musculature for three-dimensional modeling. J Speech Lang Hear Res. 2001;44:95–107.

    Article  PubMed  CAS  Google Scholar 

  6. Amri M, Car A. Projections from the medullary swallowing center to the hypoglossal motor nucleus: a neuroanatomical and electrophysiological study in sheep. Brain Res. 1988;441:119–26.

    Article  PubMed  CAS  Google Scholar 

  7. Amri M, Car A, Roman C. Axonal branching of medullary swallowing neurons projecting on the trigeminal and hypoglossal motor nuclei: demonstration by electrophysiological and fluorescent double labeling techniques. Exp Brain Res. 1990;81:384–90.

    Article  PubMed  CAS  Google Scholar 

  8. Jean A. Brainstem organization of the swallowing network. Brain Behav Evol. 1984;25:109–16.

    Article  PubMed  CAS  Google Scholar 

  9. Jean A. Control of the central swallowing program by inputs from the peripheral receptors. a review. J Auton Nerv Syst. 1984;10:225–33.

    Article  PubMed  CAS  Google Scholar 

  10. Brunner J, Ghosh S, Hoole P, Matthies M, Tiede M, Perkell J. The influence of auditory acuity on acoustic variability and the use of motor equivalence during adaptation to a perturbation. J Speech Lang Hear Res. 2011;54:727–39. doi:10.1044/1092-4388(2010/09-0256.

    Article  PubMed  Google Scholar 

  11. Perkell JS, Matthies ML, Svirsky MA, Jordan MI. Trading relations between tongue-body raising and lip rounding in production of the vowel /u/: a pilot “motor equivalence” study. J Acoust Soc Am. 1993;93:2948–61.

    Article  PubMed  CAS  Google Scholar 

  12. Fujiu M, Logemann JA, Pauloski BR. Increased postoperative posterior pharyngeal wall movement in patients with anterior oral cancer: preliminary findings and possible implications for treatment. Am J Speech Lang Pathol. 1995;4:24–30.

    Article  Google Scholar 

  13. Lazarus C, Logemann JA, Song CW, Rademaker AW, Kahrilas PJ. Effects of voluntary maneuvers on tongue base function for swallowing. Folia Phoniatr Logop. 2002;54:171–6.

    Article  PubMed  Google Scholar 

  14. Fujiu-Kurachi M, Fujiwara S, Tamine KI, Kondo J, Minagi Y, Maeda Y, Hori K, Ono T. Tongue pressure generation during tongue-hold swallows in young healthy adults measured with different tongue positions. Dysphagia. 2014;29:17–24. doi:10.1007/s00455-013-9471-z.

    Article  PubMed  Google Scholar 

  15. Doeltgen SH, Macrae P, Huckabee ML. Pharyngeal pressure generation during tongue-hold swallows across age groups. Am J Speech Lang Pathol. 2011;20:124–30. doi:10.1044/1058-0360(2011/10-0067.

    Article  PubMed  Google Scholar 

  16. Doeltgen SH, Witte U, Gumbley F, Huckabee ML. Evaluation of manometric measures during tongue-hold swallows. Am J Speech Lang Pathol. 2009;18:65–73. doi:10.1044/1058-0360(2008/06-0061.

    Article  PubMed  Google Scholar 

  17. Hoffman MR, Mielens JD, Ciucci MR, Jones CA, Jiang JJ, McCulloch TM. High-resolution manometry of pharyngeal swallow pressure events associated with effortful swallow and the Mendelsohn maneuver. Dysphagia. 2012;27:418–26. doi:10.1007/s00455-011-9385-6.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mielens JD, Hoffman MR, Ciucci MR, Jiang JJ, McCulloch TM. Automated analysis of pharyngeal pressure data obtained with high-resolution manometry. Dysphagia. 2011;26:3–12. doi:10.1007/s00455-010-9320-2.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jones CA, Hammer MJ, Hoffman MR, McCulloch TM. Quantifying contributions of the cricopharyngeus to upper esophageal sphincter pressure changes by means of intramuscular electromyography and high-resolution manometry. Ann Otol Rhinol Laryngol. 2014;123:174–82. doi:10.1177/0003489414522975.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Doty RW, Bosma JF. An electromyographic analysis of reflex deglutition. J Neurophysiol. 1956;19:44–60.

    PubMed  CAS  Google Scholar 

  21. Ertekin C, Pehlivan M, Aydogdu I, Ertas M, Uludag B, Celebi G, Colakoglu Z, Sagduyu A, Yuceyar N. An electrophysiological investigation of deglutition in man. Muscle Nerve. 1995;18:1177–86. doi:10.1002/mus.880181014.

    Article  PubMed  CAS  Google Scholar 

  22. Ertekin C, Aydogdu I. Electromyography of human cricopharyngeal muscle of the upper esophageal sphincter. Muscle Nerve. 2002;26:729–39. doi:10.1002/mus.10267.

    Article  PubMed  Google Scholar 

  23. Jean A. Brain stem control of swallowing: neuronal network and cellular mechanisms. Physiol Rev. 2001;81:929–69.

    PubMed  CAS  Google Scholar 

  24. Amri M, Car A, Jean A. Medullary control of the pontine swallowing neurones in sheep. Exp Brain Res. 1984;55:105–10.

    Article  PubMed  CAS  Google Scholar 

  25. Jean A, Car A. Inputs to the swallowing medullary neurons from the peripheral afferent fibers and the swallowing cortical area. Brain Res. 1979;178:567–72.

    Article  PubMed  CAS  Google Scholar 

  26. Car A, Jean A, Roman C. A pontine primary relay for ascending projections of the superior laryngeal nerve. Exp Brain Res. 1975;22:197–210.

    Article  PubMed  CAS  Google Scholar 

  27. Geng Z, Hoffman MR, Jones CA, McCulloch TM, Jiang JJ. Three-dimensional analysis of pharyngeal high-resolution manometry data. Laryngoscope. 2013;123:1746–53. doi:10.1002/lary.23987.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Umeki H, Takasaki K, Enatsu K, Tanaka F, Kumagami H, Takahashi H. Effects of a tongue-holding maneuver during swallowing evaluated by high-resolution manometry. Otolaryngol Head Neck Surg. 2009;141:119–22. doi:10.1016/j.otohns.2009.01.025.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Institutes of Health Grant DC011130, UW Department of Surgery pilot grant, and the UW Shapiro Summer Research Program. Dr. Hammer is also supported through National Institutes of Health Grants DC010900 and RR025012.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Hammer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammer, M.J., Jones, C.A., Mielens, J.D. et al. Evaluating the Tongue-Hold Maneuver Using High-Resolution Manometry and Electromyography. Dysphagia 29, 564–570 (2014). https://doi.org/10.1007/s00455-014-9545-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00455-014-9545-6

Keywords

Navigation