Skip to main content
Log in

On the Contractibility of Random Vietoris–Rips Complexes

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We show that the Vietoris–Rips complex \({\mathcal R}(n,r)\) built over n points sampled at random from a uniformly positive probability measure on a convex body \(K\subseteq \mathbb R^d\) is a.a.s. contractible when \(r\ge c({\ln n}/{n})^{1/d}\) for a certain constant that depends on K and the probability measure used. This answers a question of Kahle (Discrete Comput. Geom. 45(3), 553–573 (2011)). We also extend the proof to show that if K is a compact, smooth d-manifold with boundary—but not necessarily convex—then \({\mathcal R}(n,r)\) is a.a.s. homotopy equivalent to K when \(c_1(\ln n/{n})^{1/d} \le r\le c_2\) for constants \(c_1=c_1(K)\), \(c_2=c_2(K)\). Our proofs expose a connection with the game of cops and robbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Adler, R.J., Bobrowski, O., Weinberger, Sh.: Crackle: the homology of noise. Discrete Comput. Geom. 52(4), 680–704 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aigner, M., Fromme, M.: A game of cops and robbers. Discrete Appl. Math. 8(1), 1–11 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alon, N., Prałat, P.: Chasing robbers on random geometric graphs—an alternative approach. Discrete Appl. Math. 178, 149–152 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Balogh, J., Bollobás, B., Krivelevich, M., Müller, T., Walters, M.: Hamilton cycles in random geometric graphs. Ann. Appl. Probab. 21(3), 1053–1072 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beveridge, A., Dudek, A., Frieze, A., Müller, T.: Cops and robbers on geometric graphs. Comb. Probab. Comput. 21(6), 816–834 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Björner, A.: Topological methods. In: Handbook of Combinatorics, vol. 2, pp. 1819–1872. Elsevier, Amsterdam (1995)

  7. Bobrowski, O.: Homological connectivity in random Čech complexes (2019). arXiv:1906.04861

  8. Bobrowski, O., Kahle, M.: Topology of random geometric complexes: a survey. J. Appl. Comput. Topol. 1(3–4), 331–364 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bobrowski, O., Mukherjee, S., Taylor, J.E.: Topological consistency via kernel estimation. Bernoulli 23(1), 288–328 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bobrowski, O., Oliveira, G.: Random Čech complexes on Riemannian manifolds. Random Struct. Algorithms 54(3), 373–412 (2019)

    Article  MATH  Google Scholar 

  11. Iyer, S.K., Yogeshwaran, D.: Thresholds for vanishing of ‘isolated’ faces in random Čech and Vietoris–Rips complexes. Ann. Inst. Henri Poincaré Probab. Stat. 56(3), 1869–1897 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kahle, M.: Topology of random clique complexes. Discrete Math. 309(6), 1658–1671 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kahle, M.: Random geometric complexes. Discrete Comput. Geom. 45(3), 553–573 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kahle, M.: Sharp vanishing thresholds for cohomology of random flag complexes. Ann. Math. 179(3), 1085–1107 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. de Kergorlay, H.-L., Tillmann, U., Vipond, O.: Random Čech complexes on manifolds with boundary. Random Struct. Algorithms (2022). https://onlinelibrary.wiley.com/doi/full/10.1002/rsa.21062

  16. Kozlov, D.: Combinatorial Algebraic Topology. Algorithms and Computation in Mathematics, vol. 21. Springer, Berlin (2008)

    MATH  Google Scholar 

  17. Linial, N., Meshulam, R.: Homological connectivity of random \(2\)-complexes. Combinatorica 26(4), 475–487 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Malen, G.: Collapsibility of random clique complexes (2019). arXiv:1903.05055

  19. Meshulam, R., Wallach, N.: Homological connectivity of random \(k\)-dimensional complexes. Random Struct. Algorithms 34(3), 408–417 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Munkres, J.R.: Elementary Differential Topology. Annals of Mathematics Studies, vol. 54. Princeton University Press, Princeton (1966)

    MATH  Google Scholar 

  21. Niyogi, P., Smale, S., Weinberger, Sh.: Finding the homology of submanifolds with high confidence from random samples. Discrete Comput. Geom. 39(1–3), 419–441 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Niyogi, P., Smale, S., Weinberger, Sh.: A topological view of unsupervised learning from noisy data. SIAM J. Comput. 40(3), 646–663 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Penrose, M.D.: The longest edge of the random minimal spanning tree. Ann. Appl. Probab. 7(2), 340–361 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Penrose, M.D.: On \(k\)-connectivity for a geometric random graph. Random Struct. Algorithms 15(2), 145–164 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Quilliot, A.: Jeux et Pointes Fixes sur les Graphes. PhD thesis, Université de Paris VI (1978)

  26. Rudin, W.: Principles of Mathematical Analysis. International Series in Pure and Applied Mathematics. McGraw-Hill, New York (1976)

Download references

Acknowledgements

We thank Gert Vegter for helpful discussions. We thank the anonymous referees for comments that have improved our paper. Partially supported by NWO Grants 639.032.529 and 612.001.409. This work was commenced while the author was at Laboratoire G-SCOP, Univ. Grenoble Alpes, France. Partially supported by ANR Project GATO (ANR-16-CE40-0009-01) and by LabEx PERSYVAL-Lab (ANR-11-LABX-0025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matěj Stehlík.

Additional information

Editor in Charge: Kenneth Clarkson

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, T., Stehlík, M. On the Contractibility of Random Vietoris–Rips Complexes. Discrete Comput Geom 69, 1139–1156 (2023). https://doi.org/10.1007/s00454-022-00378-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-022-00378-9

Keywords

Mathematics Subject Classification

Navigation