Skip to main content
Log in

Improved Runtime Results for Simple Randomised Search Heuristics on Linear Functions with a Uniform Constraint

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

In the last decade remarkable progress has been made in development of suitable proof techniques for analysing randomised search heuristics. The theoretical investigation of these algorithms on classes of functions is essential to the understanding of the underlying stochastic process. Linear functions have been traditionally studied in this area resulting in tight bounds on the expected optimisation time of simple randomised search algorithms for this class of problems. Recently, the constrained version of this problem has gained attention and some theoretical results have also been obtained on this class of problems. In this paper we study the class of linear functions under uniform constraint and investigate the expected optimisation time of Randomised Local Search (RLS) and a simple evolutionary algorithm called (1+1) EA. We prove a tight bound of \(\varTheta (n^2)\) for RLS and improve the previously best known upper bound of (1+1) EA from \(O(n^2 \log (Bw_{\max }))\) to \(O(n^2\log B)\) in expectation and to \(O(n^2 \log n)\) with high probability, where \(w_{\max }\) and B are the maximum weight of the linear objective function and the bound of the uniform constraint, respectively. Also, we obtain a tight bound of \(O(n^2)\) for the (1+1) EA on a special class of instances. We complement our theoretical studies by experimental investigations that consider different values of B and also higher mutation rates that reflect the fact that 2-bit flips are crucial for dealing with the uniform constraint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Auger, A., Doerr, B.: Theory of Randomized Search Heuristics: Foundations and Recent Developments. World Scientific Publishing, Singapore (2011)

    Book  Google Scholar 

  2. Doerr, B., Goldberg, L.A.: Adaptive drift analysis. In: Proceedings of PPSN ’10, LNCS, vol. 6238, pp. 32–41. Springer (2010)

  3. Doerr, B., Goldberg, L.A.: Adaptive drift analysis. Algorithmica 65(1), 224–250 (2013)

    Article  MathSciNet  Google Scholar 

  4. Doerr, B., Pohl, S.: Run-time analysis of the (1+1) evolutionary algorithm optimizing linear functions over a finite alphabet. In: Proceedings of GECCO ’12, pp. 1317–1324. ACM Press (2012)

  5. Doerr, B., Johannsen, D., Winzen, C.: Drift analysis and linear functions revisited. In: Proceedings of CEC ’10, pp. 1–8. IEEE Press (2010)

  6. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. In: Proceedings of GECCO ’10, pp. 1449–1456. ACM Press (2010)

  7. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica 64(4), 673–697 (2012)

    Article  MathSciNet  Google Scholar 

  8. Doerr, B., Sudholt, D., Witt, C.: When do evolutionary algorithms optimize separable functions in parallel? In: Proceedings of FOGA ’13, pp. 51–64. ACM Press (2013)

  9. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theor. Comput. Sci. 276, 51–81 (2002)

    Article  MathSciNet  Google Scholar 

  10. Friedrich, T., Kötzing, T., Lagodzinski, J.G., Neumann, F., Schirneck, M.: Analysis of the (1+1) EA on subclasses of linear functions under uniform and linear constraints. Theor. Comput. Sci. 832(6), 3–19 (2020)

    Article  MathSciNet  Google Scholar 

  11. Hajek, B.: Hitting-time and occupation-time bounds implied by drift analysis with applications. Adv. Appl. Probab. 13(3), 502–525 (1982)

    Article  MathSciNet  Google Scholar 

  12. He, J., Yao, X.: A study of drift analysis for estimating computation time of evolutionary algorithms. Nat. Comput. 3(1), 21–35 (2004)

    Article  MathSciNet  Google Scholar 

  13. Jägersküpper, J.: A blend of Markov-chain and drift analysis. In: Proceedings of PPSN ’08, LNCS, vol. 5199, pp. 41–51. Springer (2008)

  14. Jägersküpper, J.: Combining Markov-chain analysis and drift analysis. Algorithmica 59(3), 409–424 (2011)

    Article  MathSciNet  Google Scholar 

  15. Jansen, T.: Analyzing Evolutionary Algorithms: The Computer Science Perspective. Natural Computing Series. Springer, Berlin (2013)

    Book  Google Scholar 

  16. Johannsen, D.: Random combinatorial structures and randomized search heuristics. PhD thesis, Saarland University (2010)

  17. Lehre, P.K., Witt, C.: Concentrated hitting times of randomized search heuristics with variable drift. In: Proceedings of ISAAC ’14, LNCS, vol. 8889, pp. 686–697. Springer. Extended technical report at http://arxiv.org/abs/1307.2559 (2014)

  18. Mitavskiy, B., Rowe, J.E., Cannings, C.: Theoretical analysis of local search strategies to optimize network communication subject to preserving the total number of links. Int. J. Intell. Comput. Cybern. 2(2), 243–284 (2009)

    Article  MathSciNet  Google Scholar 

  19. Neumann, F., Wegener, I.: Randomized local search, evolutionary algorithms, and the minimum spanning tree problem. Theor. Comput. Sci. 378(1), 32–40 (2007)

    Article  MathSciNet  Google Scholar 

  20. Neumann, F., Reichel, J., Skutella, M.: Computing minimum cuts by randomized search heuristics. Algorithmica 59(3), 323–342 (2011)

    Article  MathSciNet  Google Scholar 

  21. Neumann, F., Pourhassan, M., Witt, C.: Improved runtime results for simple randomised search heuristics on linear functions with a uniform constraint. Proc. Genet. Evolut. Comput. Conf. GECCO 2019, 1506–1514 (2019)

    MathSciNet  Google Scholar 

  22. Reichel, J., Skutella, M.: On the size of weights in randomized search heuristics. In: Proceedings of FOGA ’09, pp. 21–28. ACM Press (2009)

  23. Reichel, J., Skutella, M.: Evolutionary algorithms and matroid optimization problems. Algorithmica 57(1), 187–206 (2010)

    Article  MathSciNet  Google Scholar 

  24. Rowe, J.E., Sudholt, D.: The choice of the offspring population size in the (1,\(\lambda \)) EA. In: Proceedings of GECCO ’12, pp. 1349–1356. ACM (2012)

  25. Wegener, I.: Methods for the analysis of evolutionary algorithmson pseudo-Boolean functions. In: Sarker, R., Mohammadian, M., Yao, X. (eds.) Evolutionary Optimization. Kluwer Academic Publishers, Dordrecht (2001)

    MATH  Google Scholar 

  26. Witt, C.: Tight bounds on the optimization time of a randomized search heuristic on linear functions. Combin. Probab. Comput. 22(2), 294–318 (2013)

    Article  MathSciNet  Google Scholar 

  27. Witt, C.: Revised analysis of the (1+1) EA for the minimum spanning tree problem. In: Proceedings of GECCO ’14, pp. 509–516. ACM Press (2014)

Download references

Acknowledgements

This research has been supported by the Australian Research Council (ARC) through Grant DP160102401.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Neumann.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neumann, F., Pourhassan, M. & Witt, C. Improved Runtime Results for Simple Randomised Search Heuristics on Linear Functions with a Uniform Constraint. Algorithmica 83, 3209–3237 (2021). https://doi.org/10.1007/s00453-020-00779-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-020-00779-3

Keywords

Navigation