Skip to main content

Exponential Upper Bounds for the Runtime of Randomized Search Heuristics

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVI (PPSN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12270))

Included in the following conference series:

Abstract

We argue that proven exponential upper bounds on runtimes, an established area in classic algorithms, are interesting also in evolutionary computation and we prove several such results. We show that any of the algorithms randomized local search, Metropolis algorithm, simulated annealing, and \((1+1)\) evolutionary algorithm can optimize any pseudo-Boolean weakly monotonic function under a large set of noise assumptions in a runtime that is at most exponential in the problem dimension n. This drastically extends a previous such result, limited to the \((1+1)\) EA, the LeadingOnes function, and one-bit or bit-wise prior noise with noise probability at most 1/2, and at the same time simplifies its proof. With the same general argument, among others, we also derive a sub-exponential upper bound for the runtime of the \((1,\lambda )\) evolutionary algorithm on the OneMax problem when the offspring population size \(\lambda \) is logarithmic, but below the efficiency threshold.

For reasons of space, some technical details have been omitted from this extended abstract. The interested reader can find them in the extended version  [10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Section 2 for details on all technical terms used in this introduction.

  2. 2.

    As common both in classic algorithms and in our field, by runtime we mean the worst-case runtime taken over all input instances.

References

  1. Akimoto, Y., Morales, S.A., Teytaud, O.: Analysis of runtime of optimization algorithms for noisy functions over discrete codomains. Theor. Comput. Sci. 605, 42–50 (2015)

    Article  MathSciNet  Google Scholar 

  2. Antipov, D., Doerr, B.: Precise runtime analysis for plateaus. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 117–128. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4_10

    Chapter  Google Scholar 

  3. Auger, A., Doerr, B. (eds.): Theory of Randomized Search Heuristics. World Scientific Publishing (2011)

    Google Scholar 

  4. Bian, C., Qian, C., Tang, K.: Towards a running time analysis of the \((1+1)\)-EA for OneMax and LeadingOnes under general bit-wise noise. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 165–177. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4_14

    Chapter  Google Scholar 

  5. Bianchi, L., Dorigo, M., Gambardella, L.M., Gutjahr, W.J.: A survey on metaheuristics for stochastic combinatorial optimization. Nat. Comput. 8, 239–287 (2009). https://doi.org/10.1007/s11047-008-9098-4

    Article  MathSciNet  MATH  Google Scholar 

  6. Böttcher, S., Doerr, B., Neumann, F.: Optimal fixed and adaptive mutation rates for the LeadingOnes problem. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 1–10. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15844-5_1

    Chapter  Google Scholar 

  7. Colin, S., Doerr, B., Férey, G.: Monotonic functions in EC: anything but monotone! In: Genetic and Evolutionary Computation Conference, GECCO 2014, pp. 753–760. ACM (2014)

    Google Scholar 

  8. Dang, D., Lehre, P.K.: Simplified runtime analysis of estimation of distribution algorithms. In: Genetic and Evolutionary Computation Conference, GECCO 2015, pp. 513–518. ACM (2015)

    Google Scholar 

  9. Dang-Nhu, R., Dardinier, T., Doerr, B., Izacard, G., Nogneng, D.: A new analysis method for evolutionary optimization of dynamic and noisy objective functions. In: Genetic and Evolutionary Computation Conference, GECCO 2018, pp. 1467–1474. ACM (2018)

    Google Scholar 

  10. Doerr, B.: Exponential upper bounds for the runtime of randomized search heuristics. CoRR abs/2004.05733 (2020)

    Google Scholar 

  11. Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic algorithms. Theor. Comput. Sci. 567, 87–104 (2015)

    Article  MathSciNet  Google Scholar 

  12. Doerr, B., Goldberg, L.A.: Adaptive drift analysis. Algorithmica 65, 224–250 (2013). https://doi.org/10.1007/s00453-011-9585-3

    Article  MathSciNet  MATH  Google Scholar 

  13. Doerr, B., Jansen, T., Sudholt, D., Winzen, C., Zarges, C.: Mutation rate matters even when optimizing monotone functions. Evol. Comput. 21, 1–21 (2013)

    Article  Google Scholar 

  14. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In: Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 777–784. ACM (2017)

    Google Scholar 

  15. Doerr, B., Neumann, F. (eds.): Theory of Evolutionary Computation-Recent Developments in Discrete Optimization. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4

    Book  MATH  Google Scholar 

  16. Doerr, B., Sutton, A.M.: When resampling to cope with noise, use median, not mean. In: Genetic and Evolutionary Computation Conference, GECCO 2019, pp. 242–248. ACM (2019)

    Google Scholar 

  17. Droste, S.: Analysis of the (1 + 1) EA for a noisy OneMax. In: Deb, K. (ed.) GECCO 2004. LNCS, vol. 3102, pp. 1088–1099. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24854-5_107

    Chapter  Google Scholar 

  18. Droste, S., Jansen, T., Wegener, I.: On the optimization of unimodal functions with the \((1+1)\) evolutionary algorithm. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 13–22. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056845

    Chapter  Google Scholar 

  19. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theor. Comput. Sci. 276, 51–81 (2002)

    Article  MathSciNet  Google Scholar 

  20. Fomin, F.V., Kaski, P.: Exact exponential algorithms. Commun. ACM 56, 80–88 (2013)

    Article  Google Scholar 

  21. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. TTCSAES. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16533-7

    Book  MATH  Google Scholar 

  22. Friedrich, T., Kötzing, T., Krejca, M.S., Sutton, A.M.: Robustness of ant colony optimization to noise. In: Genetic and Evolutionary Computation Conference, GECCO 2015, pp. 17–24. ACM (2015)

    Google Scholar 

  23. Friedrich, T., Kötzing, T., Krejca, M.S., Sutton, A.M.: The compact genetic algorithm is efficient under extreme Gaussian noise. IEEE Trans. Evol. Comput. 21, 477–490 (2017)

    Google Scholar 

  24. Garnier, J., Kallel, L., Schoenauer, M.: Rigorous hitting times for binary mutations. Evol. Comput. 7, 173–203 (1999)

    Article  Google Scholar 

  25. Gießen, C., Kötzing, T.: Robustness of populations in stochastic environments. Algorithmica 75, 462–489 (2016). https://doi.org/10.1007/s00453-015-0072-0

    Article  MathSciNet  MATH  Google Scholar 

  26. Happ, E., Johannsen, D., Klein, C., Neumann, F.: Rigorous analyses of fitness-proportional selection for optimizing linear functions. In: Genetic and Evolutionary Computation Conference, GECCO 2008, pp. 953–960. ACM (2008)

    Google Scholar 

  27. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algorithms. Artif. Intell. 127, 51–81 (2001)

    Article  MathSciNet  Google Scholar 

  28. Jansen, T.: On the brittleness of evolutionary algorithms. In: Stephens, C.R., Toussaint, M., Whitley, D., Stadler, P.F. (eds.) FOGA 2007. LNCS, vol. 4436, pp. 54–69. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73482-6_4

    Chapter  MATH  Google Scholar 

  29. Jansen, T.: Analyzing Evolutionary Algorithms. The Computer Science Perspective. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-17339-4

    Book  MATH  Google Scholar 

  30. Jansen, T., Wegener, I.: On the analysis of a dynamic evolutionary algorithm. J. Discrete Algorithms 4, 181–199 (2006)

    Article  MathSciNet  Google Scholar 

  31. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments - a survey. IEEE Trans. Evol. Comput. 9, 303–317 (2005)

    Article  Google Scholar 

  32. Lehre, P.K.: Negative drift in populations. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 244–253. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15844-5_25

    Chapter  Google Scholar 

  33. Lengler, J.: A general dichotomy of evolutionary algorithms on monotone functions. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 3–15. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4_1

    Chapter  Google Scholar 

  34. Lengler, J.: Drift analysis. Theory of Evolutionary Computation. NCS, pp. 89–131. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4_2

    Chapter  Google Scholar 

  35. Mühlenbein, H.: How genetic algorithms really work: mutation and hill climbing. In: Parallel problem solving from nature, PPSN 1992, pp. 15–26. Elsevier (1992)

    Google Scholar 

  36. Neumann, F., Pourhassan, M., Roostapour, V.: Analysis of evolutionary algorithms in dynamic and stochastic environments. Theory of Evolutionary Computation. NCS, pp. 323–357. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4_7

    Chapter  MATH  Google Scholar 

  37. Neumann, F., Sutton, A.M.: Parameterized complexity analysis of randomized search heuristics. Theory of Evolutionary Computation. NCS, pp. 213–248. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4_4

    Chapter  Google Scholar 

  38. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization -Algorithms and Their Computational Complexity. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16544-3

    Book  MATH  Google Scholar 

  39. Oliveto, P.S., Witt, C.: Improved time complexity analysis of the simple genetic algorithm. Theoret. Comput. Sci. 605, 21–41 (2015)

    Article  MathSciNet  Google Scholar 

  40. Paixão, T., Heredia, J.P., Sudholt, D., Trubenová, B.: Towards a runtime comparison of natural and artificial evolution. Algorithmica 78, 681–713 (2017)

    Article  MathSciNet  Google Scholar 

  41. Qian, C., Bian, C., Jiang, W., Tang, K.: Running time analysis of the \({(1+1)}\)-EA for OneMax and LeadingOnes under bit-wise noise. Algorithmica 81, 749–795 (2019)

    Article  MathSciNet  Google Scholar 

  42. Qian, C., Yu, Y., Zhou, Z.: Analyzing evolutionary optimization in noisy environments. Evol. Comput. 26, 1–41 (2018)

    Article  Google Scholar 

  43. Rowe, J.E., Sudholt, D.: The choice of the offspring population size in the (1, \(\lambda \)) evolutionary algorithm. Theoret. Comput. Sci. 545, 20–38 (2014)

    Article  MathSciNet  Google Scholar 

  44. Sudholt, D.: A new method for lower bounds on the running time of evolutionary algorithms. IEEE Trans. Evol. Comput. 17, 418–435 (2013)

    Article  Google Scholar 

  45. Sudholt, D.: Analysing the robustness of evolutionary algorithms to noise:refined runtime bounds and an example where noise is beneficial. Algorithmica (2020, to appear). https://doi.org/10.1007/s00453-020-00671-0

  46. Sudholt, D., Thyssen, C.: A simple ant colony optimizer for stochastic shortest path problems. Algorithmica 64, 643–672 (2012). https://doi.org/10.1007/s00453-011-9606-2

    Article  MathSciNet  MATH  Google Scholar 

  47. Wegener, I., Witt, C.: On the optimization of monotone polynomials by simple randomized search heuristics. Comb. Probab. Comput. 14, 225–247 (2005)

    Article  MathSciNet  Google Scholar 

  48. Witt, C.: Worst-case and average-case approximations by simple randomized search heuristics. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 44–56. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31856-9_4

    Chapter  Google Scholar 

  49. Witt, C.: Tight bounds on the optimization time of a randomized search heuristic on linear functions. Comb. Probab. Comput. 22, 294–318 (2013)

    Article  MathSciNet  Google Scholar 

  50. Xiao, M., Nagamochi, H.: Confining sets and avoiding bottleneck cases: a simple maximum independent set algorithm in degree-3 graphs. Theoret. Comput. Sci. 469, 92–104 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Doerr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Doerr, B. (2020). Exponential Upper Bounds for the Runtime of Randomized Search Heuristics. In: Bäck, T., et al. Parallel Problem Solving from Nature – PPSN XVI. PPSN 2020. Lecture Notes in Computer Science(), vol 12270. Springer, Cham. https://doi.org/10.1007/978-3-030-58115-2_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58115-2_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58114-5

  • Online ISBN: 978-3-030-58115-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics