Skip to main content
Log in

Promoting mechanism of nitrogen removal by Fe3O4 magnetic particles during the start-up phase in sequencing batch reactor

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this paper, a magnetic sequencing batch reactor (SBR) was constructed, and the influence rule of magnetic particle dosing performance of denitrification was investigated. The diversity, structure, and potential functions of the microbial community were comprehensively explored. The results showed that the particle size and the dosage of Fe3O4 magnetic particles were the main parameters affecting the sedimentation performance of activated sludge. The start-up phase of the SBR reactor with Fe3O4 magnetic particles was 5 days less than the control. Moreover, total nitrogen removal efficiency during the start-up phase was improved, with the maximum value reaching 91.93%, surpassing the control by 9.7% with the Fe3O4 dosage of 1.2 g L−1. In addition, the activated sludge concentration and dehydrogenase activity were improved, compared to the control. High-throughput sequencing showed that the denitrifying bacterium Saccharimonadales dominated the reactor and was enriched by magnetic particles. According to predicted functions, the abundance of genes for denitrification increased with the addition of magnetic particles, suggesting the capacity of nitrogen removal was enhanced in the microbial community. Overall, the Fe3O4 magnetic particles provide great potential for enhanced wastewater nitrogen removal.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Wu Z, Li JC, Sun YX, Peñuelas J, Huang JL, Sardans J, Jiang QS, Finlay JC, Britten GL, Follows MJ, Gao W, Qin BQ, Ni JR, Huo SL, Liu Y (2022) Imbalance of global nutrient cycles exacerbated by the greater retention of phosphorus over nitrogen in lakes. Nat Geosci 15:464–468. https://doi.org/10.1038/s41561-022-00958-7

    Article  CAS  Google Scholar 

  2. Zhang Q, Xu XJ, Zhou X, Chen C (2022) Recent advances in autotrophic biological nitrogen removal for low carbon wastewater: a review. Water 14:1101. https://doi.org/10.3390/w14071101

    Article  CAS  Google Scholar 

  3. Chen S, Yang D, Wang Q, Huang X, Ren H, Xu K (2022) Study on the advanced nitrogen removal under low temperature by biofilm on weak magnetic carriers. Bioresour Technol 360:127580. https://doi.org/10.1016/j.biortech.2022.127580

    Article  CAS  PubMed  Google Scholar 

  4. Du R, Peng YZ, Ji JT, Shi LL, Gao RT, Li XC (2019) Partial denitrification providing nitrite: opportunities of extending application for anammox. Environ Int 131:105001. https://doi.org/10.1016/i.envint.2019.105001

    Article  CAS  PubMed  Google Scholar 

  5. Liu XG, Kim MG, Nakhla G, Andalib M, Fang Y (2020) Partial nitrification-reactor configurations, and operational conditions: performance analysis. J Environ Chem Eng 8:103984. https://doi.org/10.1016/j.jece.2020.103984

    Article  CAS  Google Scholar 

  6. Zhang ZG, Pan SL, Huang F, Li X, Shang JF, Lai J, Liao YT (2017) nitrogen and phosphorus removal by activated sludge process: a review. Mini-Rev Org Chem 14:99–106. https://doi.org/10.2174/1570193X14666161130151411

    Article  CAS  Google Scholar 

  7. Wang JY, Zhang ZR, Wu F, Sun WT, Wang F, Han JA, Pan YW, Wu GY (2023) Facile fabrication of Fe3O4-Biochar hybrid nanomaterials as catalysts for Photo-Fenton degradation of tetracycline. Opt Mater 143:114156. https://doi.org/10.1016/j.optmat.2023.114156

    Article  CAS  Google Scholar 

  8. Covaliu CI, Stoian O, Matei E, Paraschiv G, Tanasa E, Catrina GA (2021) Research on copper ions removal from wastewater using Fe3O4 and Fe3O4- PVP hybrid nanomaterials. Mater Plast 58:154–166. https://doi.org/10.37358/MatPlast.1964

    Article  Google Scholar 

  9. Jiang JS, Hou R, Cui HL, Liu D, Yan GX, Fan YJ, Cheng K, Cao ZG (2023) Occurrences of typical PPCPs during wastewater treatment and the composting of sewage sludge with micron-sized and nano-Fe3O4. Environ Pollut 336:122386. https://doi.org/10.1016/j.envpol.2023.122386

    Article  CAS  PubMed  Google Scholar 

  10. Chen Y, Zhang FY, Shi XS, Lu MY, Qin K, Feng Q, Guo RB (2022) Synthesis and application of magnetic PS@Fe3O4 microparticles for improving nitrogen removal in wastewater treatment process. J Environ Chem Eng 10:108164. https://doi.org/10.1016/j.jece.2022.108164

    Article  CAS  Google Scholar 

  11. Ouyang LF, Qiu B (2023) Positive effects of magnetic Fe3O4@polyaniline on aerobic granular sludge: aerobic granulation, granule stability and pollutants removal performance. Bioresour Technol 368:128296. https://doi.org/10.1016/j.biortech.2022.128296

    Article  CAS  PubMed  Google Scholar 

  12. Feng CW, Li ZH, Zhu YM, Xu D, Geng JJ, Ren HQ, Xu K (2020) Effect of magnetic powder on nitrous oxide emissions from a sequencing batch reactor for treating domestic wastewater at low temperatures. Bioresour Technol 315:123848. https://doi.org/10.1016/j.biortech.2020.123848

    Article  CAS  PubMed  Google Scholar 

  13. Tian S, Huang SC, Zhu YC, Zhang GM, Lian JF, Liu ZW, Zhang LA, Qin XX (2021) Effect of low-intensity ultrasound on partial nitrification: Performance, sludge characteristics, and properties of extracellular polymeric substances. Ultrason Sonochem 73:105527. https://doi.org/10.1016/j.ultsonch.2021.105527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Karimi F, Hamidian Y, Behrouzifar F, Mostafazadeh R, Ghorbani-HasanSaraei A, Alizadeh M, Mortazavi SM, Janbazi M, Asrami PN (2022) An applicable method for extraction of whole seeds protein and its determination through Bradford’s method. Food Chem Toxicol 164:113053. https://doi.org/10.1016/j.fct.2022.113053

    Article  CAS  PubMed  Google Scholar 

  15. Drzewicki A, Debowski M, Zielinski M (2017) Effect of a static magnetic field on activated sludge community. Environ Technol 38:2373–2380. https://doi.org/10.1080/09593330.2016.1262455

    Article  CAS  PubMed  Google Scholar 

  16. Wu BB, Li J, Li Q, Ouche QY, Sun XJ, Lan LN (2020) Effect of different factors on magnetized activated sludge-treated wastewater. Fresenius Environ Bull 29: 206-213. https://www.researchgate.net/publication/355872149

  17. Zielinski M, Cydzik-Kwiatkowska A, Zielinska M, Debowski M, Rusanowska P, Kopanska J (2017) Nitrification in activated sludge exposed to static magnetic field. Water Air Soil Poll 228:126. https://doi.org/10.1007/s11270-017-3316-6

    Article  CAS  Google Scholar 

  18. Liu YJ, Guo L, Ren XM, Zhao YG, Jin CJ, Gao MC, Ji JY, She ZL (2022) Effect of magnetic field intensity on aerobic granulation and partial nitrification-denitrification performance. Process Saf Environ 160:859–867. https://doi.org/10.1016/j.psep.2022.02.065

    Article  CAS  Google Scholar 

  19. Hou LG, Liu Y, Fan S, Li J (2020) Magnetic field enhanced denitrification efficiency of immobilized bacterial particles. Water Sci Technol 81:622–629. https://doi.org/10.2166/wst.2020.156

    Article  CAS  PubMed  Google Scholar 

  20. Du R, Cao SB, Peng YZ, Zhang HY, Wang SY (2019) Combined Partial Denitrification (PD)-Anammox: a method for high nitrate wastewater treatment. Environ Int 126:707–716. https://doi.org/10.1016/j.envint.2019.03.007

    Article  CAS  PubMed  Google Scholar 

  21. Liu S, Li H, Wang YZ (2023) Research on microbial community structure and treatment of dye wastewater with the enhancement of activated sludge by magnetic field at low temperature. RSC Adv 13:16471–16479. https://doi.org/10.1039/d3ra00048f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Al-Mayyahi RB, Park SG, Jadhav DA, Hussien M, Mohamed HO, Castaño P, Al-Qaradawi SY, Chae KJ (2023) Unraveling the influence of magnetic field on microbial and electrogenic activities in bioelectrochemical systems: a comprehensive review. Fuel 331:125889. https://doi.org/10.1016/j.fuel.2022.125889

    Article  CAS  Google Scholar 

  23. Hong PN, Matsuura N, Noguchi M, Yamamoto-Ikemoto R, Honda R (2022) Change of extracellular polymeric substances and microbial community in biofouling mitigation by continuous vanillin dose in membrane bioreactor. J Water Process Eng 47:102644. https://doi.org/10.1016/j.jwpe.2022.102644

    Article  Google Scholar 

  24. Wang YY, Wang JQ, Liu ZP, Huang XH, Fang F, Guo JS, Yan P (2021) Effect of EPS and its forms of aerobic granular sludge on sludge aggregation performance during granulation process based on XDLVO theory. Sci Total Environ 795:148682. https://doi.org/10.1016/j.scitotenv.2021.148682

    Article  CAS  PubMed  Google Scholar 

  25. Zhang FY, Feng Q, Chen Y, Shi XS, Qin K, Lu MY, Qin F, Fu SF, Guo RB (2022) Enhancement of biological nitrogen removal performance from low C/N municipal wastewater using novel carriers based on the nano-Fe3O4. Bioresour Technol 363:127914. https://doi.org/10.1016/j.biortech.2022.127914

    Article  CAS  PubMed  Google Scholar 

  26. Ni SQ, Ni JY, Yang N, Wang J (2013) Effect of magnetic nanoparticles on the performance of activated sludge treatment system. Bioresour Technol 143:555–561. https://doi.org/10.1016/i.biortech.2013.06.041

    Article  CAS  PubMed  Google Scholar 

  27. Zaidi NS, Sohaili J, Muda K, Sillanpää M (2014) Magnetic field application and its potential in water and wastewater treatment systems. Sep Purif Rev 43:206–240. https://doi.org/10.1080/15422119.2013.794148

    Article  CAS  Google Scholar 

  28. Geng SY, Fu WZ, Chen WF, Zheng SL, Gao Q, Wang J, Ge XH (2020) Effects of an external magnetic field on microbial functional genes and metabolism of activated sludge based on metagenomic sequencing. Sci Rep 10:8818. https://doi.org/10.1038/s41598-020-65795-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang LT, Lei ZF, Yang XJ, Zhang C, Liu C, Shimizu K, Zhang ZY, Yuan T (2022) Fe3O4 enhanced efficiency of volatile fatty acids production in anaerobic fermentation of food waste at high loading. Bioresour Technol 364:128097. https://doi.org/10.1016/j.biortech.2022.128097

    Article  CAS  PubMed  Google Scholar 

  30. Yang ZC, Zhou Q, Sun HM, Jia LX, Zhao L, Wu WZ (2021) Metagenomic analyses of microbial structure and metabolic pathway in solid-phase denitrification systems for advanced nitrogen removal of wastewater treatment plant effluent: a pilot-scale study. Water Res 196:117067. https://doi.org/10.1016/j.watres.2021.117067

    Article  CAS  PubMed  Google Scholar 

  31. Wang HY, Peng L, Mao NJ, Geng JJ, Ren HQ, Xu K (2021) Effects of Fe3+ on microbial communities shifts, functional genes expression and nitrogen transformation during the start-up of Anammox process. Bioresour Technol 320:124326. https://doi.org/10.1016/j.actatropica.2020.124326

    Article  CAS  PubMed  Google Scholar 

  32. Tian RM, Ning DL, He ZL, Zhang P, Spencer SJ, Gao SH, Shi WL, Wu LW, Zhang Y, Yang YF, Adams BG, Rocha AM, Detienne BL, Lowe KA, Joyner DC, Klingeman DM, Arkin AP, Fields MW, Hazen TC, Stahl DA, Alm EJ, Zhou JZ (2020) Small and mighty: adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity. Microbiome 8:51. https://doi.org/10.1186/s40168-020-00825-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chaudhari NM, Overholt WA, Figueroa-Gonzalez PA, Taubert M, Bornemann TLV, Probst AJ, Hölzer M, Marz M, Küsel K (2021) The economical lifestyle of CPR bacteria in groundwater allows little preference for environmental drivers. Environ Microbiomes 16:24. https://doi.org/10.1186/s40793-021-00395-w

    Article  CAS  Google Scholar 

  34. Banerjee S, Schlaeppi K, van der Heijden MGA (2018) Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol 16:567–576. https://doi.org/10.1038/s41579-018-0024-1

    Article  CAS  PubMed  Google Scholar 

  35. Ren W, Cao FF, Chai BB, Jin PK, Ju K (2022) Enhancing nitrogen removal from domestic sewage with low C/N ratio using a biological aerated filter system with internal reflux-coupled intermittent aeration. Biochem Eng J 185:108532. https://doi.org/10.1016/j.bej.2022.108532

    Article  CAS  Google Scholar 

  36. Zhu HJ, Li WX, Chen XJ, Mu H, Hu KY, Ren S, Peng YZ, Zhao RF, Wang Y (2023) Effects of sponge iron dosage on nitrogen removal performance and microbial community structure in sequencing batch reactors. Bioresour Technol 368:128307. https://doi.org/10.1016/j.biortech.2022.128307

    Article  CAS  PubMed  Google Scholar 

  37. Ruprecht JE, Birrer SC, Dafforn KA, Mitrovic SM, Crane SL, Johnston EL, Wemheuer F, Navarro A, Harrison AJ, Turner IL, Glamore WC (2021) Wastewater effluents cause microbial community shifts and change trophic status. Water Res 200:117206. https://doi.org/10.1016/j.watres.2021.117206

    Article  CAS  PubMed  Google Scholar 

  38. Zhang DY, Berry JP, Zhu D, Wang Y, Chen Y, Jiang B, Huang S, Langford H, Li GH, Davison PA, Xu J, Aries E, Huang WE (2015) Magnetic nanoparticle-mediated isolation of functional bacteria in a complex microbial community. ISME J 9:603–614. https://doi.org/10.1038/ismej.2014.161

    Article  CAS  PubMed  Google Scholar 

  39. Xia Q, Liu F, Sun SR, Huang WL, Zhao ZW, Yang F, Lei ZF, Huang WW, Yi XS (2023) Coupling iron sludge addition and intermittent aeration for achieving simultaneous methanogenesis, feammox, and denitrification in a single reactor treating fish sludge. Environ Sci Technol 57:15065–15075. https://doi.org/10.1021/acs.est.3c03009

    Article  CAS  PubMed  Google Scholar 

  40. Wang YQ, Bao GY (2022) Diversity of prokaryotic microorganisms in alkaline saline soil of the Qarhan Salt Lake area in the Qinghai-Tibet Plateau. Sci Rep 12:3365. https://doi.org/10.1038/s41598-022-07311-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yun HY, Wang T, Wang SH, Meng H, Xing FH (2023) Enhancing mainstream anammox process by adding Fe3O4 nanoparticles. J Environ Chem Eng 11:110826. https://doi.org/10.1016/j.jece.2023.110826

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work was partly supported by the National Natural Science Foundation of China (No. 51808257) and the Scientific Research Foundation for High-level Talents in University of Jinan (No. 1009566).

Author information

Authors and Affiliations

Authors

Contributions

Xiaoyu Hu: Investigation, Methodology, Data curation, Software, and Writing—Original Draft. Shuai Zhang: Reviewing, Editing, and Supervision. Guicai Liu: Editing, and Supervision. Jiabin Wang: Reviewing, Conceptualization, Methodology, Supervision, and Funds acquisition. Yue Wang: Investigation and Data curation.

Corresponding author

Correspondence to Jiabin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1185 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Zhang, S., Liu, G. et al. Promoting mechanism of nitrogen removal by Fe3O4 magnetic particles during the start-up phase in sequencing batch reactor. Bioprocess Biosyst Eng 47, 851–862 (2024). https://doi.org/10.1007/s00449-024-03006-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-024-03006-3

Keywords

Navigation