Skip to main content

Advertisement

Log in

Morinda citrifolia leaf assisted synthesis of ZnO decorated Ag bio-nanocomposites for in-vitro cytotoxicity, antimicrobial and anticancer applications

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This study used Morinda citrifolia leaf (MCL) extract to synthesise Zinc oxide nanoparticles (ZnO NPs) and ZnO decorated silver nanocomposites (ZnO/Ag NCs). The synthesized nanomaterials structural morphology and crystallinity were characterized using a Field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD) analysis. The antimicrobial activity of ZnO NPs and ZnO/Ag NCs was evaluated using human nosocomial bacterial pathogens. The highest antimicrobial activity was recorded for ZnO/Ag NCs at the minimum inhibitory concentration (MIC) at 80 and 100 μg/mL for Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis, Staphylococcus aureus than ZnO NPs at the MIC of 120 and 140 μg/mL for Bacillus subtilis and Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus. Furthermore, ROS detection, viability assay and bacterial membrane integrity analysis of ZnO/Ag NCs treated P. aeruginosa and S. aureus revealed the fundamental bactericidal mechanism involving cell wall, cell membrane interaction and release of cytoplasmic contents. In addition, ZnO/Ag NCs and ZnO NPs showed higher toxicity towards A549 lung cancer cells than the non-cancerous RAW264 macrophage cells, with IC50 of 242 and 398 µg/mL respectively, compared to IC50 of 402 and 494 µg/mL for the macrophage cells. These results suggest that the ZnO/Ag NCs can be effectively used to develop antimicrobial and anticancer materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data represented in this article are available on request from the corresponding author.

References

  1. Khan MI, Paul P, Behera SK, Jena B, Tripathy SK, Lundborg CS, Mishra AJCEJ (2021) To decipher the antibacterial mechanism and promotion of wound healing activity by hydrogels embedded with biogenic Ag@ ZnO core-shell nanocomposites. Chem Eng J 417:128025

    Article  CAS  Google Scholar 

  2. El-Moslamy SH (2018) Bioprocessing strategies for cost-effective large-scale biogenic synthesis of nano-MgO from endophytic Streptomyces coelicolor strain E72 as an anti-multidrug-resistant pathogens agent. Sci Rep 8:3820

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  3. Machelart A, Salzano G, Li X, Demars A, Debrie A-S, Menendez-Miranda M, Pancani E, Jouny S, Hoffmann E, Deboosere N, Belhaouane I, Rouanet C, Simar S, Talahari S, Giannini V, Villemagne B, Flipo M, Brosch R, Nesslany F, Deprez B, Muraille E, Locht C, Baulard AR, Willand N, Majlessi L, Gref R, Brodin P (2019) Intrinsic antibacterial activity of nanoparticles made of β-cyclodextrins potentiates their effect as drug nanocarriers against tuberculosis. ACS Nano 13(4):3992–4007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Thangudu S, Kulkarni SS, Vankayala R, Chiang C-S, Hwang KC (2020) Photosensitized reactive chlorine species-mediated therapeutic destruction of drug-resistant bacteria using plasmonic core–shell Ag@AgCl nanocubes as an external nanomedicine. Nanoscale 12:12970–12984

    Article  CAS  PubMed  Google Scholar 

  5. Pirtarighat S, Ghannadnia M, Baghshahi S (2019) Biosynthesis of silver nanoparticles using Ocimum basilicum cultured under controlled conditions for bactericidal application. Mater Sci Eng C 98:250–255

    Article  CAS  Google Scholar 

  6. Shobha B, Ashwini BS, Ghazwani M, Hani U, Atwah B, Alhumaidi MS, Basavaraju S, Chowdappa S, Ravikiran T, Wahab S, Ahmad W, Lakshmeesha TR, Ansari MA (2023) Trichoderma-mediated ZnO nanoparticles and their antibiofilm and antibacterial activities. Journal of Fungi 9:133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ajlouni A-W, Hamdan EH, Alshalawi RAE, Shaik MR, Khan M, Kuniyil M, Alwarthan A, Ansari MA, Khan M, Alkhathlan HZ, Shaik JP, Adil SF (2023) Synthesis of silver nanoparticles using aerial part extract of the anthemis green pseudocotula boiss. Plant Biol Activity Mol 28:246

    CAS  Google Scholar 

  8. Huq MA, Ashrafudoulla M, Rahman MM, Balusamy SR, Akter S (2022) Green synthesis and potential antibacterial applications of bioactive silver nanoparticles: a review. Polymers 14(4):742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Manimegalai P, Selvam K, Loganathan S, Kirubakaran D, Shivakumar MS, Govindasamy M, Rajaji U, Bahajjaj AAA (2023) Green synthesis of zinc oxide (ZnO) nanoparticles using aqueous leaf extract of Hardwickia binata: their characterizations and biological applications. Biomass Convers Biorefinery 1–16

  10. Zahoor S, Sheraz S, Shams DF, Rehman G, Nayab S, Shah MIA, Ateeq M, Shah SK, Ahmad T, Shams S, Khan W (2023) Biosynthesis and anti-inflammatory activity of zinc oxide nanoparticles using leaf extract of senecio chrysanthemoides. Biomed Res Int 2023:3280708

    Article  PubMed  PubMed Central  Google Scholar 

  11. Patil BN, Taranath TC (2018) Limonia acidissima L. leaf mediated synthesis of silver and zinc oxide nanoparticles and their antibacterial activities. Microb Pathog 115:227–232

    Article  CAS  PubMed  Google Scholar 

  12. McClements DJ, Xiao H (2017) Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles. NPJ Science of Food 1:6

  13. Anwar A, Masri A, Rao K, Rajendran K, Khan NA, Shah MR, Siddiqui R (2019) Antimicrobial activities of green synthesized gums-stabilized nanoparticles loaded with flavonoids. Sci Rep 9:3122

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  14. Saravanan M, Gopinath V, Chaurasia MK, Syed A, Ameen F, Purushothaman N (2018) Green synthesis of anisotropic zinc oxide nanoparticles with antibacterial and cytofriendly properties. Microb Pathog 115:57–63

    Article  CAS  PubMed  Google Scholar 

  15. Taha A, Ben Aissa M, Da’na E (2020) Green synthesis of an activated carbon-supported Ag and ZnO nanocomposite for photocatalytic degradation and its antibacterial activities. Molecules 25:1586

  16. Tekin D, Tekin T, Kiziltas H (2019) Photocatalytic degradation kinetics of Orange G dye over ZnO and Ag/ZnO thin film catalysts. Sci Rep 9:17544

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  17. Kheirabadi M, Samadi M, Asadian E, Zhou Y, Dong C, Zhang J, Moshfegh AZ (2019) Well-designed Ag/ZnO/3D graphene structure for dye removal: Adsorption, photocatalysis and physical separation capabilities. J Colloid Interface Sci 537:66–78

    Article  ADS  CAS  PubMed  Google Scholar 

  18. He W, Kim H-K, Wamer WG, Melka D, Callahan JH, Yin J-J (2013) Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity. J Am Chem Soc 136:750–757

    Article  PubMed  Google Scholar 

  19. Cui J, Wu D, Li Z, Zhao G, Wang J, Wang L, Niu B (2021) Mesoporous Ag/ZnO hybrid cages derived from ZIF-8 for enhanced photocatalytic and antibacterial activities. Ceram Int 47:15759–15770

    Article  CAS  Google Scholar 

  20. Tao S, Yang M, Chen H, Zhao S, Chen G (2018) Continuous synthesis of Ag/AgCl/ZnO composites using flow chemistry and photocatalytic application. Ind Eng Chem Res 57:3263–3273

    Article  CAS  Google Scholar 

  21. Wang S, Huang Q, Liu X, Li Z, Yang H, Lu Z (2019) Rapid antibiofilm effect of Ag/ZnO nanocomposites assisted by dental LED curing light against facultative anaerobic oral pathogen Streptococcus mutans. ACS Biomater Sci Eng 5(4):2030–2040

    Article  CAS  PubMed  Google Scholar 

  22. Mao C, Xiang Y, Liu X, Cui Z, Yang X, Yeung KWK, Pan H, Wang X, Chu PK, Wu S (2017) Photo-inspired antibacterial activity and wound healing acceleration by hydrogel embedded with Ag/Ag@ AgCl/ZnO nanostructures. ACS Nano 11:9010–9021

    Article  CAS  PubMed  Google Scholar 

  23. Deng Q, Duan X, Ng DH, Tang H, Yang Y, Kong M, Wu Z, Cai W, Wang G (2012) Ag nanoparticle decorated nanoporous ZnO microrods and their enhanced photocatalytic activities. ACS Appl Mater Interfaces 4:6030–6037

    Article  CAS  PubMed  Google Scholar 

  24. Ghaemi B, Shaabani E, Najafi-Taher R, Jafari Nodooshan S, Sadeghpour A, Kharrazi S, Amani A (2018) Intracellular ROS induction by Ag@ ZnO core-shell nanoparticles: frontiers of permanent optically active holes in breast cancer theranostic. ACS Appl Mater Interfaces 10:24370–24381

    Article  CAS  PubMed  Google Scholar 

  25. Jiang X, He W, Zhang X, Wu Y, Zhang Q, Cao G, Zhang H, Zheng J, Croley TR, Yin J-J (2018) Light-induced assembly of metal nanoparticles on ZnO enhances the generation of charge carriers, reactive oxygen species, and antibacterial activity. J Phys Chem C 122:29414–29425

    Article  CAS  Google Scholar 

  26. Gopinath V, MubarakAli D, Vadivelu J, Manjunath Kamath S, Syed A, Elgorban AM (2020) Synthesis of biocompatible chitosan decorated silver nanoparticles biocomposites for enhanced antimicrobial and anticancer property. Process Biochem 99:348–356

    Article  CAS  Google Scholar 

  27. Cui Y, Zhao Y, Tian Y, Zhang W, Lü X, Jiang X (2012) The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials 33:2327–2333

    Article  CAS  PubMed  Google Scholar 

  28. Gopinath V, Priyadarshini S, Al-Maleki A, Alagiri M, Yahya R, Saravanan S, Vadivelu J (2016) In vitro toxicity, apoptosis and antimicrobial effects of phyto-mediated copper oxide nanoparticles. RSC Adv 6:110986–110995

    Article  ADS  CAS  Google Scholar 

  29. Priyadarshini S, Sonsudin F, Mainal A, Yahya R, Gopinath V, Vadivelu J, Alarjani KM, Al Farraj DA, Yehia HM (2021) Phytosynthesis of biohybrid nano-silver anchors enhanced size dependent photocatalytic, antibacterial, anticancer properties and cytocompatibility. Process Biochem 101:59–71

    Article  CAS  Google Scholar 

  30. Bandeira M, Giovanela M, Roesch-Ely M, Devine DM, da Silva CJ (2020) Green synthesis of zinc oxide nanoparticles: a review of the synthesis methodology and mechanism of formation. Sustain Chem Pharm 15:100223

    Article  Google Scholar 

  31. Jobe MC, Mthiyane DMN, Mwanza M, Onwudiwe DC (2022) Biosynthesis of zinc oxide and silver/zinc oxide nanoparticles from Urginea epigea for antibacterial and antioxidant applications. Heliyon 8:e12243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Alahdal FAM, Qashqoosh MTA, Manea YK, Salem MAS, Khan AMT, Naqvi S (2022) Eco-friendly synthesis of zinc oxide nanoparticles as nanosensor, nanocatalyst and antioxidant agent using leaf extract of P. austroarabica. OpenNano 8:100067

  33. Ansari MA, Govindasamy R, Begum MY, Ghazwani M, Alqahtani A, Alomary MN, Jamous YF, Alyahya SA, Asiri S, Khan FA, Almessiere MA, Baykal A (2023) Bioinspired ferromagnetic CoFe2O4 nanoparticles: potential pharmaceutical and medical applications. Nanotechnol Rev 12(1):20230575

  34. Alanazi MQ, Virk P, Alterary SS, Awad M, Ahmad Z, Albadri AM, Ortashi K, Ahmed MMA, Ali Yousef MI, Elobeid M, Al-Qahtani EA (2023) Effect of potential microplastics in sewage effluent on Nile Tilapia and photocatalytic remediation with zinc oxide nanoparticles. Environ Pollut 332:121946

    Article  CAS  PubMed  Google Scholar 

  35. Ali ZA, Shudirman I, Yahya R, Venkatraman G, Hirad AH, Ansari SAJC (2022) Green synthesis of ZnO nanostructures using pyrus pyrifolia: antimicrobial. Photocatal Dielectr Prop 12:1808

    CAS  Google Scholar 

  36. Tabrizi Hafez Moghaddas SM, Elahi B, Javanbakht V (2020) Biosynthesis of pure zinc oxide nanoparticles using Quince seed mucilage for photocatalytic dye degradation. J Alloy Compd 821:153519

    Article  CAS  Google Scholar 

  37. Panchal P, Paul DR, Sharma A, Choudhary P, Meena P, Nehra SP (2020) Biogenic mediated Ag/ZnO nanocomposites for photocatalytic and antibacterial activities towards disinfection of water. J Colloid Interface Sci 563:370–380

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Ramasamy B, Jeyadharmarajan J, Chinnaiyan P (2021) Novel organic assisted Ag-ZnO photocatalyst for atenolol and acetaminophen photocatalytic degradation under visible radiation: performance and reaction mechanism. Environ Sci Pollut Res Int 28:39637–39647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chauhan A, Verma R, Kumari S, Sharma A, Shandilya P, Li X, Batoo KM, Imran A, Kulshrestha S, Kumar R (2020) Photocatalytic dye degradation and antimicrobial activities of pure and Ag-doped ZnO using Cannabis sativa leaf extract. Sci Rep 10:7881

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mallakpour S, Okhovat M (2021) Hydroxyapatite mineralization of chitosan-tragacanth blend/ZnO/Ag nanocomposite films with enhanced antibacterial activity. Int J Biol Macromol 175:330–340

    Article  CAS  PubMed  Google Scholar 

  41. Mousavi-Kouhi SM, Beyk-Khormizi A, Amiri MS, Mashreghi M, Yazdi MET (2021) Silver-zinc oxide nanocomposite: from synthesis to antimicrobial and anticancer properties. Ceram Int 47:21490–21497

    Article  CAS  Google Scholar 

  42. Li X, Ren Z, Wang R, Liu L, Zhang J, Ma F, Khan MZH, Zhao D, Liu X (2021) Characterization and antibacterial activity of edible films based on carboxymethyl cellulose, Dioscorea opposita mucilage, glycerol and ZnO nanoparticles. Food Chem 349:129208

    Article  CAS  PubMed  Google Scholar 

  43. Shaikh S, Nazam N, Rizvi SMD, Ahmad K, Baig MH, Lee EJ, Choi I (2019) Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. Int J Mol Sci 20:2468

    Article  PubMed  PubMed Central  Google Scholar 

  44. Fialho L, Grenho L, Fernandes MH, Carvalho SJMS, C E, (2021) Porous tantalum oxide with osteoconductive elements and antibacterial core-shell nanoparticles: a new generation of materials for dental implants. Mater Sci Eng C 120:111761

    Article  CAS  Google Scholar 

  45. Hernández-Díaz JA, Garza-García JJ, León-Morales JM, Zamudio-Ojeda A, Arratia-Quijada J, Velázquez-Juárez G, López-Velázquez JC, García-Morales S (2021) Antibacterial activity of biosynthesized selenium nanoparticles using extracts of calendula officinalis against potentially clinical bacterial strains. Molecules 26(19):5929

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhang Y, Gao X, Zhi L, Liu X, Jiang W, Sun Y, Yang J (2014) The synergetic antibacterial activity of Ag islands on ZnO (Ag/ZnO) heterostructure nanoparticles and its mode of action. J Inorg Biochem 130:74–83

    Article  CAS  PubMed  Google Scholar 

  47. Dias HB, Bernardi MIB, Marangoni VS, de Abreu Bernardi AC, de Souza Rastelli AN, Hernandes AC (2019) Synthesis, characterization and application of Ag doped ZnO nanoparticles in a composite resin. Mater Sci Eng, C 96:391–401

    Article  CAS  Google Scholar 

  48. Yin Z, Li X, Li S, Shi W, Wang A, Gao J, Ma C (2024) Investigation of fuel type on the microstructure and antibacterial activity of Li-doped MgO nanoparticles. Ceram Int 50:1633–1642

    Article  CAS  Google Scholar 

  49. Makauki E, Mtavangu SG, Basu OD, Rwiza M, Machunda R (2023) Facile biosynthesis of Ag-ZnO nanocomposites using Launaea cornuta leaf extract and their antimicrobial activity. Discov Nano 18:142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Karagoz S, Kiremitler NB, Sarp G, Pekdemir S, Salem S, Goksu AG, Onses MS, Sozdutmaz I, Sahmetlioglu E, Ozkara ES, Ceylan A, Yilmaz E (2021) Antibacterial, antiviral, and self-cleaning mats with sensing capabilities based on electrospun nanofibers decorated with ZnO nanorods and Ag nanoparticles for protective clothing applications. ACS Appl Mater Interfaces 13:5678–5690

    Article  CAS  PubMed  Google Scholar 

  51. Das S, Sinha S, Suar M, Yun S-I, Mishra A, Tripathy SK (2015) Solar-photocatalytic disinfection of Vibrio cholerae by using Ag@ ZnO core–shell structure nanocomposites. J Photochem Photobiol, B 142:68–76

    Article  CAS  PubMed  Google Scholar 

  52. Ye W, Jiang Y, Liu Q, Xu D, Zhang E, Cheng X, Wan Z, Liu C (2022) The preparation of visible light-driven ZnO/Ag2MoO4/Ag nanocomposites with effective photocatalytic and antibacterial activity. J Alloy Compd 891:161898

    Article  CAS  Google Scholar 

  53. Cui J, Liang Y, Yang D, Liu Y (2016) Facile fabrication of rice husk based silicon dioxide nanospheres loaded with silver nanoparticles as a rice antibacterial agent. Sci Rep 6:21423

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. da Silva BL, Caetano BL, Chiari-Andréo BG, Pietro RCLR, Chiavacci LA (2019) Increased antibacterial activity of ZnO nanoparticles: Influence of size and surface modification. Colloids Surf, B 177:440–447

    Article  Google Scholar 

  55. Li M, Zhu L, Lin D (2011) Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ Sci Technol 45:1977–1983

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Li Z, Zhang F, Meng A, Xie C, Xing J (2015) ZnO/Ag micro/nanospheres with enhanced photocatalytic and antibacterial properties synthesized by a novel continuous synthesis method. RSC Adv 5:612–620

    Article  ADS  CAS  Google Scholar 

  57. Karakoti A, Hench L, Seal S (2006) The potential toxicity of nanomaterials—the role of surfaces. Jom 58:77–82

    Article  CAS  Google Scholar 

  58. Mariadoss AVA, Saravanakumar K, Sathiyaseelan A, Naveen KV, Wang M-HJMP (2022) Enhancement of anti-bacterial potential of green synthesized selenium nanoparticles by starch encapsulation. Microb Pathog 167:105544

    Article  CAS  PubMed  Google Scholar 

  59. Grigor’eva A, Bardasheva A, Tupitsyna A, Amirkhanov N, Tikunova N, Pyshnyi D, Ryabchikova EJM (2020) Changes in the ultrastructure of Staphylococcus aureus treated with cationic peptides and chlorhexidine. Microorganisms 8(12):1991

  60. Primo JO, Horsth DF, Correa JS, Das A, Bittencourt C, Umek P, Buzanich AG, Radtke M, Yusenko KV, Zanette C, Anaissi FJ (2022) Synthesis and characterization of Ag/ZnO nanoparticles for bacteria disinfection in water. Nanomaterials (Basel, Switzerland) 12(10):1764

    Article  CAS  PubMed  Google Scholar 

  61. Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2:32

    Article  Google Scholar 

  62. Naskar A, Bera S, Bhattacharya R, Saha P, Roy SS, Sen T, Jana S (2016) Synthesis, characterization and antibacterial activity of Ag incorporated ZnO–graphene nanocomposites. RSC Adv 6:88751–88761

    Article  ADS  CAS  Google Scholar 

  63. Alabyadh T, Albadri R, Es-haghi A, Yazdi MET, Ajalli N, Rahdar A, Thakur VK (2022) ZnO/CeO2 nanocomposites: metal-organic framework-mediated synthesis, characterization, and estimation of cellular toxicity toward liver cancer cells. J Funct Biomater 13:139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. He W, Wu H, Wamer WG, Kim H-K, Zheng J, Jia H, Zheng Z, Yin J-J (2014) Unraveling the enhanced photocatalytic activity and phototoxicity of ZnO/metal hybrid nanostructures from generation of reactive oxygen species and charge carriers. ACS Appl Mater Interfaces 6:15527–15535

    Article  CAS  PubMed  Google Scholar 

  65. Miri A, Mahdinejad N, Ebrahimy O, Khatami M, Sarani M (2019) Zinc oxide nanoparticles: biosynthesis, characterization, antifungal and cytotoxic activity. Mater Sci Eng, C 104:109981

    Article  CAS  Google Scholar 

  66. Arumai Selvan DS, Keerthi M, Murugesan S, Shobana S, Lakshmi B, Veena V, Rahiman AK (2021) In vitro cytotoxicity efficacy of phytosynthesized Ag/ZnO nanocomposites using Murraya koenigii and Zingiber officinale extracts. Mater Chem Phys 272:124903

    Article  CAS  Google Scholar 

  67. Song JH, Lee C, Lee D, Kim S, Bang S, Shin M-S, Lee J, Kang KS, Shim SH (2018) Neuroprotective compound from an endophytic fungus, colletotrichum sp. JS-0367. J Nat Prod 81:1411–1416

    Article  CAS  PubMed  Google Scholar 

  68. Tay CY, Fang W, Setyawati MI, Chia SL, Tan KS, Hong CHL, Leong DT (2014) Nano-hydroxyapatite and nano-titanium dioxide exhibit different subcellular distribution and apoptotic profile in human oral epithelium. ACS Appl Mater Interfaces 6:6248–6256

    Article  CAS  PubMed  Google Scholar 

  69. Verma SK, Jha E, Panda PK, Thirumurugan A, Parashar S, Patro S, Suar M (2018) Mechanistic insight into size-dependent enhanced cytotoxicity of industrial antibacterial titanium oxide nanoparticles on colon cells because of reactive oxygen species quenching and neutral lipid alteration. ACS Omega 3:1244–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chen R, Huo L, Shi X, Bai R, Zhang Z, Zhao Y, Chang Y, Chen C (2014) Endoplasmic reticulum stress induced by zinc oxide nanoparticles is an earlier biomarker for nanotoxicological evaluation. ACS Nano 8:2562–2574

    Article  CAS  PubMed  Google Scholar 

  71. Taghavizadeh Yazdi ME, Nourbakhsh F, Mashreghi M, Mousavi SH (2021) Ultrasound-based synthesis of ZnO· Ag 2 O 3 nanocomposite: characterization and evaluation of its antimicrobial and anticancer properties. Res Chem Intermed 47:1285–1296

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors extend their appreciation to the Researchers Supporting Project number (RSPD2024R677), King Saud University, Riyadh, Saudi Arabia for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Data Curation, Formal Analysis, Methods, Validation, Writing—Original Draft, Review & Editing: GV; Analysis and Interpretation of Data: PSM, Writing—Review & Editing, BM; PSAR; and FS; Formal Analysis, AHH; AAA; SW.

Corresponding author

Correspondence to Gopinath Venkatraman.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatraman, G., Mohan, P.S., Abdul-Rahman, P.S. et al. Morinda citrifolia leaf assisted synthesis of ZnO decorated Ag bio-nanocomposites for in-vitro cytotoxicity, antimicrobial and anticancer applications. Bioprocess Biosyst Eng (2024). https://doi.org/10.1007/s00449-024-02995-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00449-024-02995-5

Keywords

Navigation