Skip to main content
Log in

Facilitating nitrification and biofilm formation of Vibrio sp. by N-acyl-homoserine lactones in high salinity environment

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The N-acyl-homoserine lactones (AHLs)-mediated quorum-sensing (QS) system played a crucial role in regulating biological nitrogen removal and biofilm formation. However, the regulatory role of AHLs on nitrogen removal bacteria in high salinity environment has remained unclear. This study evaluated the roles and release patterns of AHLs in Vibrio sp. LV-Q1 under high salinity condition. Results showed that Vibrio sp. primarily secretes five AHLs, and the AHLs activity is strongly correlated with the bacterial density. Exogenous C10-HSL and 3OC10-HSL were found to significantly enhance ammonium removal, while making a minor contribution to the growth rate. Both the C10-HSL and 3OC10-HSL promoted the biofilm formation of Vibrio sp. with an enhancement of 1.64 and 1.78 times, respectively. The scanning electron microscope (SEM) and confocal laser scanning microscope (CLSM) observations confirmed the biofilm-enhancing effect of AHLs. Further analysis revealed that AHLs significantly improved bacterial self-aggregation and motility, as well as the level of extracellular polymeric substances (EPS). These findings provide significant guidance on construction of nitrification system at high salinity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The original contributions presented in the study are included in the article/Supplementary material, and further inquiries can be directed to the corresponding author.

References

  1. Wang YZ, Zhu T, Wong YJ, Zhang K, Chang MD (2023) Treatment performance of multi-stage active biological process (MSABP) reactor for saline sauerkraut wastewater: acclimatization, optimization and improvement. Bioproc Biosyst Eng 46(7):981–993. https://doi.org/10.1007/s00449-023-02877-2

    Article  CAS  Google Scholar 

  2. Man QL, Zhang PL, Huang WQ, Zhu Q, He XL, Wei DS (2022) A heterotrophic nitrification-aerobic denitrification bacterium Halomonas venusta TJPU05 suitable for nitrogen removal from high-salinity wastewater. Front Env Sci Eng 16(6):69. https://doi.org/10.1007/s11783-021-1503-6

    Article  CAS  Google Scholar 

  3. Zhang MR, Han F, Li YK, Liu Z, Chen H, Li Z, Li Q, Zhou WZ (2021) Nitrogen recovery by a halophilic ammonium-assimilating microbiome: a new strategy for saline wastewater treatment. Water Res 207:117832. https://doi.org/10.1016/j.watres.2021.117832

    Article  CAS  PubMed  Google Scholar 

  4. Ding R, Ding ZY, Chen XJ, Fu JL, Zhou ZJ, Chen X, Zheng X, Jin YC, Chen RY (2021) Integration of electrodialysis and Donnan dialysis for the selective separation of ammonium from high-salinity wastewater. Chem Eng J 405:127001. https://doi.org/10.1016/j.cej.2020.127001

    Article  CAS  Google Scholar 

  5. Qin YJ, Wang KC, Xia Q, Yu SQ, Zhang MA, An Y, Zhao XD, Zhou Z (2023) Up-concentration of nitrogen from domestic wastewater: a sustainable strategy from removal to recovery. Chem Eng J 451:138789. https://doi.org/10.1016/j.cej.2022.138789

    Article  CAS  Google Scholar 

  6. Corsino SF, Capodici M, Di PF, Tandoi V, Torregrossa M (2019) Comparison between kinetics of autochthonous marine bacteria in activated sludge and granular sludge systems at different salinity and SRTs. Water Res 148:425–437. https://doi.org/10.1016/j.watres.2018.10.086

    Article  CAS  PubMed  Google Scholar 

  7. Wang QQ, He SL, Yang W, Zhu JB, Zhang WK, Xue RZ, Liu LM (2022) The effects of salinity changes on anammox performance: the response rule and tolerance mechanism. Water Environ Res 94(9):e10789. https://doi.org/10.1002/wer.10789

    Article  CAS  PubMed  Google Scholar 

  8. Luo G, Wang Z, Li Y, Li J, Li AM (2019) Salinity stresses make a difference in the start-up of membrane bioreactor: performance, microbial community and membrane fouling. Bioproc Biosyst Eng 42(3):445–454. https://doi.org/10.1007/s00449-018-2048-3

    Article  CAS  Google Scholar 

  9. Li JB, Ma JX, Sun L, Liu X, Liao HY, He D (2022) Mechanistic insight into the biofilm formation and process performance of a passive aeration ditch (PAD) for decentralized wastewater treatment. Front Env Sci Eng 16(7):86. https://doi.org/10.1007/s11783-021-1494-3

    Article  CAS  Google Scholar 

  10. Zhang MR, Han F, Chen H, Yao JY, Li QY, Li Z, Zhou WZ (2022) The effect of salinity on ammonium-assimilating biosystems in hypersaline wastewater treatment. Sci Total Environ 829:154622. https://doi.org/10.1016/j.scitotenv.2022.154622

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Zhang Q, Fu JJ, Wu QY, Chen JY, Fan NS, Huang BC, Jin RC (2021) Build the expressway for the salt-tolerant anammox process: acclimation strategy tells the story. J Clean Prod 278:123921. https://doi.org/10.1016/j.jclepro.2020.123921

    Article  CAS  Google Scholar 

  12. Zuo LS, Yao H, Chen H, Li HY, Jia FX, Guo JH (2021) The application of glycine betaine to alleviate the inhibitory effect of salinity on one-stage partial nitritation/anammox process. Water Environ Res 93:549–558. https://doi.org/10.1002/wer.1457

    Article  CAS  PubMed  Google Scholar 

  13. Singha LP, Shukla P (2023) Microbiome engineering for bioremediation of emerging pollutants. Bioproc Biosyst Eng 46(3):323–339. https://doi.org/10.1007/s00449-022-02777-x

    Article  CAS  Google Scholar 

  14. Whiteley M, Diggle SP, Greenberg EP (2017) Progress in and promise of bacterial quorum sensing research. Nature 551:313–320. https://doi.org/10.1038/nature24624

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. Zhao ZC, Xie GJ, Liu BF, Xing DF, Ding J, Han HJ, Ren NQ (2021) A review of quorum sensing improving partial nitritation-anammox process: functions, mechanisms and prospects. Sci Total Environ 765:142703. https://doi.org/10.1016/j.scitotenv.2020.142703

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Cheng Y, Zhang Y, Shen QX, Gao J, Zhuang GQ, Zhuang XL (2017) Effects of exogenous short-chain N-acyl-homoserine lactone on denitrifying process of Paracoccus denitrificans. J Environ Sci 54:33–39. https://doi.org/10.1016/j.jes.2016.05.019

    Article  CAS  Google Scholar 

  17. Wang XJ, Wang WQ, Li Y, Zhang J, Zhang Y, Li J (2018) Biofilm activity, ammonia removal and cell growth of the heterotrophic nitrifier, Acinetobacter sp., facilitated by exogenous N-acyl-homoserine lactones. Rsc Adv 8:30783–30793. https://doi.org/10.1039/c8ra05545a

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  18. Gao W, Hu YC, Jiao XH, Gao MM, Wang XH (2021) Recovery of structure and activity of disintegrated aerobic granular sludge after long-term storage: effect of exogenous N-acyl-homoserine lactones. Chemosphere 281:130894. https://doi.org/10.1016/j.chemosphere.2021.130894

    Article  CAS  PubMed  Google Scholar 

  19. Sun ZQ, Xi JY, Yeung M, Lu LC (2022) Two quorum sensing enhancement methods optimized the biofilm of biofilters treating gaseous chlorobenzene. Sci Total Environ 807:150589. https://doi.org/10.1016/j.scitotenv.2021.150589

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Liu LJ, Xu SH, Wang F, Yan Z, Tian ZK, Ji M (2021) Effect of exogenous N-acyl-homoserine lactones on the anammox process at 15 °C: nitrogen removal performance, gene expression and metagenomics analysis. Bioresour Technol 341:125760. https://doi.org/10.1016/j.biortech.2021.125760

    Article  CAS  PubMed  Google Scholar 

  21. Henke JM, Bassler BL (2004) Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J Bacteriol 186(20):6902–6914. https://doi.org/10.1128/JB.186.20.6902-6914.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang Y, Wang H, Liang W, Hay AJ, Zhong Z, Kan B, Zhu J (2013) Quorum sensing regulatory cascades control Vibrio fluvialis pathogenesis. J Bacteriol 195(16):3583–3589. https://doi.org/10.1128/JB.00508-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bao JJ, Guo DK, Jin L, Li TJ, Shi H (2022) Accurate identification of diverse N-acyl homoserine lactones in marine Vibrio fluvialis by UHPLC-MS/MS. Curr Microbiol 79:181. https://doi.org/10.1007/s00284-022-02879-5

    Article  CAS  PubMed  Google Scholar 

  24. Yang Q, Han Y, Zhang XH (2011) Detection of quorum sensing signal molecules in the family Vibrionaceae. J Appl Microbiol 110(6):1438–1448. https://doi.org/10.1111/j.1365-2672.2011.04998.x

    Article  CAS  PubMed  Google Scholar 

  25. Wang MZ, Zheng X, He HZ, Shen DS, Feng HJ (2012) Ecological roles and release patterns of acylated homoserine lactones in Pseudomonas sp. HF-1 and their implications in bacterial bioaugmentation. Bioresour Technol 125:119–126. https://doi.org/10.1016/j.biortech.2012.08.116

    Article  CAS  PubMed  Google Scholar 

  26. Wang Y, Chen H, Liu YX, Ren RP, Lv YK (2015) Effect of temperature, salinity, heavy metals, ammonium concentration, pH and dissolved oxygen on ammonium removal by an aerobic nitrifier. Rsc Adv 5:79988–79996. https://doi.org/10.1039/c5ra13318a

    Article  CAS  ADS  Google Scholar 

  27. Li HX, Xu SS, Wang S, Yang JX, Yan P, Chen YP, Guo JS, Fang F (2020) New insight into the effect of short-term exposure to polystyrene nanoparticles on activated sludge performance. J Water Process Eng 38:101559. https://doi.org/10.1016/j.jwpe.2020.101559

    Article  Google Scholar 

  28. Eboigbodin KE, Biggs CA (2008) Characterization of the extracellular polymeric substances produced by Escherichia coli using infrared spectroscopic, proteomic, and aggregation studies. Biomacromol 9:686–695. https://doi.org/10.1021/bm701043c

    Article  CAS  Google Scholar 

  29. Feng Q, Luo LW, Chen XD, Zhang KJ, Fang F, Xue ZX, Li C, Cao JS, Luo JY (2021) Facilitating biofilm formation of Pseudomonas aeruginosa via exogenous N-Acy-L-homoserine lactones stimulation: regulation on the bacterial motility, adhesive ability and metabolic activity. Bioresour Technol 341:125727. https://doi.org/10.1016/j.biortech.2021.125727

    Article  CAS  PubMed  Google Scholar 

  30. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    Article  CAS  PubMed  Google Scholar 

  31. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356

    Article  CAS  Google Scholar 

  32. Xu YB, Wang BS, Wang GZ, Zhang Y (2022) Degradation of refractory organics in the pharmaceutical wastewater by bioelectrochemical system. Chem Ind Eng Prog 41(9):5055–5064. https://doi.org/10.16085/j.issn.1000-6613.2021-2421

    Article  Google Scholar 

  33. Gao M, Liu YJ, Liu Z, Li HT, Zhang AN (2020) Dynamic characteristics of AHLs-secreting strain Aeromonas sp. A-L2 and its bioaugmentation during quinoline biodegradation. J Appl Microbiol 128(4):1060–1073. https://doi.org/10.1111/jam.14530

    Article  CAS  PubMed  Google Scholar 

  34. Rather MA, Gupta K, Mandal M (2021) Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Braz J Microbiol 52:1701–1718. https://doi.org/10.1007/s42770-021-00624-x

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang YS, Bian ZR, Wang Y (2022) Biofilm formation and inhibition mediated by bacterial quorum sensing. Appl Microbiol Biot 106:6365–6381. https://doi.org/10.1007/s00253-022-12150-3

    Article  CAS  Google Scholar 

  36. Jia FX, Peng YZ, Li JW, Li XY, Yao H (2021) Metagenomic prediction analysis of microbial aggregation in anammox-dominated community. Water Environ Res 93:2549–2558. https://doi.org/10.1002/wer.1529

    Article  CAS  PubMed  Google Scholar 

  37. Laverty G, Gorman SP, Gilmore BF (2014) Biomolecular mechanisms of Pseudomonas aeruginosa and Escherichia coli biofilm formation. Pathogens 3(3):596–632. https://doi.org/10.3390/pathogens3030596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ipina EP, Otte S, Pontier BR, Czerucka D, Peruani F (2019) Bacteria display optimal transport near surfaces. Nat Phys 15(6):610–615. https://doi.org/10.1038/s41567-019-0460-5

    Article  CAS  Google Scholar 

  39. Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes JA, Molin S, Tolker NT (2003) Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol microbiol 48(6):1511–1524. https://doi.org/10.1046/j.1365-2958.2003.03525.x

    Article  CAS  PubMed  Google Scholar 

  40. Mukherjee S, Bhattacharjee S, Paul S, Nath S, Paul S (2023) Biofilm: a syntrophic consortia of microbial cells: boon or bane? Appl Biochem Biotech 195:5583–5604. https://doi.org/10.1007/s12010-022-04075-4

    Article  CAS  Google Scholar 

  41. Seviour T, Derlon N, Dueholm MS, Flemming HC, Girbal NE, Horn H, Kjelleberg S, van Loosdrecht MCM, Lotti T, Malpei MF, Nerenberg R, Neu TR, Paul E, Yu HQ, Lin YM (2019) Extracellular polymeric substances of biofilms: suffering from an identity crisis. Water Res 151:1–7. https://doi.org/10.1016/j.watres.2018.11.020

    Article  CAS  PubMed  Google Scholar 

  42. Li JJ, Jiang ZQ, Chen SS, Wang T, Jiang L, Wang MX, Wang SM, Li Z (2019) Biochemical changes of polysaccharides and proteins within EPS under Pb (II) stress in Rhodotorula mucilaginosa. Ecotox Environ Safe 174:484–490. https://doi.org/10.1016/j.ecoenv.2019.03.004

    Article  CAS  Google Scholar 

  43. Chen W, Westerhoff P, Leenheer JA, Booksh K (2003) Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environ Sci Technol 37:5701–5710. https://doi.org/10.1021/es034354c

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Zhou RX, Ma XR, Li J, Zhang LH, Zhang J, Zhang YC, Han H (2021) Effects of AHLs at low temperature on the characteristics of mature biofilms in aerobic zone of multi-stage A/O technology. China Environ Sci 41(5):2133–2140. https://doi.org/10.19674/j.cnki.issn1000-6923.2021.0225

    Article  CAS  Google Scholar 

  45. Schuster M, Lostroh CP, Ogi T, Greenberg EP (2003) Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185:2066–2079. https://doi.org/10.1128/JB.185.7.2066-2079.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sun YP, Guan YT, Wang D, Liang K, Wu GX (2018) Potential roles of acyl homoserine lactone based quorum sensing in sequencing batch nitrifying biofilm reactors with or without the addition of organic carbon. Bioresour Technol 259:136–145. https://doi.org/10.1016/j.biortech.2018.03.025

    Article  CAS  PubMed  Google Scholar 

  47. Burton EO, Read HW, Pellitteri MC, Hickey WJ (2005) Identification of acyl-homoserine lactone signal molecules produced by Nitrosomonas europaea strain Schmidt. Appl Environ Microbiol 71(8):4906–4909. https://doi.org/10.1128/AEM.71.8.4906-4909.2005

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  48. Ma F, Sun YL, Li A, Zhang XN, Yang JX (2015) Activation of accumulated nitrite reduction by immobilized Pseudomonas stutzeri T13 during aerobic denitrification. Bioresour Technol 187:30–36. https://doi.org/10.1016/j.biortech.2015.03.060

    Article  CAS  PubMed  Google Scholar 

  49. Galloway W, Hodgkinson JT, Bowden SD, Welch M, Spring DR (2011) Quorum sensing in Gram-negative bacteria: small-molecule modulation of AHL and Al-2 quorum sensing pathways. Chem Rev 111(1):28–67. https://doi.org/10.1021/cr100109t

    Article  CAS  PubMed  Google Scholar 

  50. Rabaey K, Boon N, Hofte M, Verstraete W (2005) Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 39:3401–3408. https://doi.org/10.1021/es048563o

    Article  CAS  PubMed  ADS  Google Scholar 

  51. Warrier A, Satyamoorthy K, Murali TS (2021) Quorum-sensing regulation of virulence factors in bacterial biofilm. Future Microbiol 16(13):1003–1021. https://doi.org/10.2217/fmb-2020-0301

    Article  CAS  PubMed  Google Scholar 

  52. Hall SL, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108. https://doi.org/10.1038/nrmicro821

    Article  CAS  Google Scholar 

  53. Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633. https://doi.org/10.1038/nrmicro2415

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Shanxi Province Science Foundation for Youths (Grant No. 20210302124348 and 202103021223099), Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering (Grant No. 2021SX-AT004), and the National Natural Science Foundation of China (Grant No. 51778397).

Author information

Authors and Affiliations

Authors

Contributions

ZG conceived and designed the research, analyzed the data, and drafted the article. YW participated in data analysis. HC contributed to the data analysis and revision of the manuscript. YL revised the manuscript. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ying Wang or Yongkang Lv.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 222 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Wang, Y., Chen, H. et al. Facilitating nitrification and biofilm formation of Vibrio sp. by N-acyl-homoserine lactones in high salinity environment. Bioprocess Biosyst Eng 47, 325–339 (2024). https://doi.org/10.1007/s00449-023-02962-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-023-02962-6

Keywords

Navigation