Skip to main content
Log in

Accurate Identification of Diverse N-acyl Homoserine Lactones in Marine Vibrio fluvialis by UHPLC-MS/MS

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Vibrio fluvialis is a marine opportunistic pathogen that frequently causes diseases in aquatic animals and humans. V. fluvialis can produce quorum sensing signaling molecules to coordinate cell density-dependent behavioral changes, including N-acyl homoserine lactone (AHL), which acts as a vital mediator of virulence-associated gene expression. Currently, several AHL molecules in V. fluvialis have been detected via biological and physicochemical methods, although different detection approaches have generated diverse AHL profiles. Here, we describe the AHL-producing bacterium, V. fluvialis BJ-1, which was isolated from marine sediments from the East China Sea. V. fluvialis BJ-1 could stimulate AHL-mediated β-galactosidase synthesis of the biosensor Agrobacterium tumefaciens NTL4 (pZLR4) but could not induce violacein production in the AHL reporter strain, Chromobacterium violaceum CV026. This bacterial isolate exhibited strong AHL-producing activity at low cell density; however, the AHL activity declined when population density remained at high levels. Analysis of the AHLs by Ultra-High-Performance Liquid Chromatography tandem Mass Spectrometry demonstrated that V. fluvialis BJ-1 produced five different AHL signaling molecules, including two linear chain AHL products (C8- and C10-HSL), and three β-carbon-oxidative AHL products (3-O-C8-, 3-O-C10- and 3-O-C12-HSL). Significantly, the present study is the first to accurately define the AHL profile of marine V. fluvialis. In future, the coupling of UHPLC to ESI–MS/MS is expected to be utilized for the accurate determination of AHL profiles in marine Vibrio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Waters CM, Bassler BL (2005) Quorum sensing: Cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    Article  CAS  PubMed  Google Scholar 

  2. Schuster M, Sexton DJ, Diggle SP, Greenberg EP (2013) Acylhomoserine lactone quorum sensing: from evolution to application. Annu Rev Microbiol 67:43–63

    Article  CAS  PubMed  Google Scholar 

  3. Prescott RD, Decho AW (2020) Flexibility and adaptability of quorum sensing in nature. Trends Microbiol 28(6):436–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Parker CT, Sperandio V (2009) Cell-to-cell signaling during pathogenesis. Cell Microbiol 11:363–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bandara HM, Lam OL, Jin LJ, Samaranayake L (2012) Microbial chemical signaling: a current perspective. Crit Rev Microbiol 38(3):217–249

    Article  CAS  PubMed  Google Scholar 

  6. Papenfort K, Bassler BL (2016) Quorum sensing signal-response systems in gram-negative bacteria. Nat Rev Microbiol 14:576–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fuqua C, Greenberg EP (2002) Listening in on bacteria: acyl-homoserine lactone signalling. Nat Rev Mol Cell Biol 3(9):685–695

    Article  CAS  PubMed  Google Scholar 

  8. Parsek MR, Greenberg EP (2000) Acyl-homoserine lactone quorum sensing in gram-negative bacteria: A signaling mechanism involved in associations with higher organisms. Proc Natl Acad Sci USA 97:8789–8793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jin L, Bao J, Chen Y, Yang W, Du W (2021) Structural insights into acyl-ACP selective recognition by the Aeromonas hydrophila AHL synthase AhyI. BMC Microbiol 21(1):1–11

    Article  Google Scholar 

  10. Reading NC, Vanessa S (2006) Quorum sensing: the many languages of bacteria. FEMS Microbiol Lett 254:1–11

    Article  CAS  PubMed  Google Scholar 

  11. O’Connor G, Knecht LD, Salgado N, Strobel S, Pasini P, Daunert S (2015) Whole-cell biosensors as tools for the detection of quorum-sensing molecules: uses in diagnostics and the investigation of the quorum-sensing mechanism. Adv Biochem Eng Biotechnol 3:181–200

    Google Scholar 

  12. Sun L, Tang C, Leng YP (2010) The research progress of the novel thin layer chromatography expansion agent. Sci Technol West China 9:47–48

    Google Scholar 

  13. Okutsu N, Morohoshi T, Xie X, Kato N, Ikeda T (2016) Characterization of N-acylhomoserine lactones produced by bacteria isolated from industrial cooling water systems. Sensors 16(1):44

    Article  Google Scholar 

  14. Jin L, Zhang X, Shi H, Wang W, Qiao Z, Yang W, Du W (2020) Identification of a novel N-acyl Homoserine lactone synthase, AhyI, in Aeromonas hydrophila and structural basis for its substrate specificity. J Agr Food Chem 68(8):2516–2527

    Article  CAS  Google Scholar 

  15. Jin L, Chen Y, Yang W, Qiao Z, Zhang X (2020) Complete genome sequence of fish-pathogenic Aeromonas hydrophila HX-3 and a comparative analysis: insights into virulence factors and quorum sensing. Sci Rep 10(1):1–15

    Article  Google Scholar 

  16. Klitgaard A, Iversen A, Andersen MR, Larsen TO, Frisvad JC, Nielsen KF (2014) Aggressive dereplication using UHPLC-DAD-QTOF: screening extracts for up to 3000 fungal secondary metabolites. Anal Bioanal Chem 406(7):1933–1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Taylor MW, Schupp PJ, Baillie HJ, Charlton TS, de Nys R, Kjelleberg S, Steinberg D, P, (2004) Evidence for acyl homoserine lactone signal production in bacteria associated with marine sponges. Appl Environ Microbiol 70:4387–4389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ferreira NP, Chiavelli LUR, Lucca DL, de Oliveira Santin SM, Pavli F, Nychas GJ, Zuluagac MYA, de Oliveira ALM, Pomini AM (2019) Identification and characterization of a long-chain N-acyl homoserine lactone from Rhizobium sp. isolated from Zea x mays rhizosphere. Rhizophere-Neth 9:34–37

    Google Scholar 

  19. Girard L, Blanchet É, Intertaglia L, Baudart J, Stien D, Suzuki M, Lebaron P, Lami R (2017) Characterization of N-Acyl homoserine lactones in Vibrio tasmaniensis LGP32 by a biosensor-based UHPLC-HRMS/MS Method. Sensors 17:906

    Article  PubMed Central  Google Scholar 

  20. Liu J, Fu K, Wu C, Qin K, Li F, Zhou L (2018) In-Group communication in marine vibrio a review of N-acyl homoserine lactones-driven quorum sensing. Front Cell Infect Mi 8:139

    Article  CAS  Google Scholar 

  21. Milton DL (2006) Quorum sensing in vibrios: complexity for diversification. Int J Med Microbiol 296(2–3):61–71

    Article  CAS  PubMed  Google Scholar 

  22. Pruzzo C, Huq A, Colwell RR, Donelli G (2005) Pathogenic Vibrio species in the marine and estuarine environment. In: Oceans and health: pathogens in the marine environment. Springer Boston, MA p: 217–252.

  23. Girard L (2019) Quorum sensing in Vibrio spp. the complexity of multiple signalling molecules in marine and aquatic environments. Crit Rev Microbiol 45(4):451–471

    Article  CAS  PubMed  Google Scholar 

  24. Dunlap PV (1999) Quorum regulation of luminescence in Vibrio fischeri. J Mol Microbiol Biotechnol 1(1):5–12

    CAS  PubMed  Google Scholar 

  25. Tall BD, Fall S, Pereira MR, Ramos-Valle M, Curtis SK, Kothary MH, Chu DMT, Monday SR, Kornegay L, Donkar T, Prince D, Thunberg RL, Shangraw KA, Hanes DE, Khambaty FM, Lampel KA, Bier JW, Bayer RC (2003) Characterization of Vibrio fluvialis-like strains implicated in limp lobster disease. Appl Environ Microbiol 69(12):7435–7446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ramamurthy T, Chowdhury G, Pazhani GP, Shinoda S (2014) Vibrio fluvialis: an emerging human pathogen. Front Microbiol 5:91

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zheng B, Jiang X, Cheng H, Guo L, Zhang J, Xu H, Yu X, Huang C, Ji J, Ying CQ, Feng YJ, Xiao YH, Li L (2017) Genome characterization of two bile-isolated Vibrio fluvialis strains: an insight into pathogenicity and bile salt adaption. Sci Rep 7(1):1–10

    Article  Google Scholar 

  28. Wang Y, Wang H, Liang W, Hay AJ, Zhong Z, Kan B, Zhu J (2013) Quorum sensing regulatory cascades control Vibrio fluvialis pathogenesis. J Bacteriol 195(16):3583–3589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rasmussen BB, Nielsen KF, Machado H, Melchiorsen J, Gram L, Sonnenschein EC (2014) Global and phylogenetic distribution of quorum sensing signals, acyl homoserine lactones, in the family of Vibrionaceae. Mar Drugs 12(11):5527–5546

    Article  CAS  PubMed  Google Scholar 

  30. Yang Q, Han Y, Zhang XH (2011) Detection of quorum sensing signal molecules in the family Vibrionaceae. J Appl Microbiol 110(6):1438–1448

    Article  CAS  PubMed  Google Scholar 

  31. McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycroft BW, Stewart GSAB, Williams P (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiol Spectr 143(12):3703–3711

    CAS  Google Scholar 

  32. Zhu J, Chai Y, Zhong Z, Li S, Winans SC (2003) Agrobacterium bioassay strain for ultrasensitive detection of N-acylhomoserine lactone-type quorum-sensing molecules: detection of autoinducers in Mesorhizobium huakuii. Appl Environ Microbiol 69(11):6949–6953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bosshard PP, Zbinden R, Abels S, Boddinghaus B, Altwegg M, Bottger EC (2006) 16S rRNA gene sequencing versus the API 20 NE system and the VITEK 2 ID-GNB card for identification of nonfermenting Gram-negative bacteria in the clinical laboratory. J Clin Microbiol 44(4):1359–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA 6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ravn L, Christensen AB, Molin S, Givskov M, Gram L (2001) Methods for detecting acylated homoserine lactones produced by Gram-negative bacteria and their application in studies of AHL-production kinetics. J Microbiol Methods 44(3):239–251

    Article  CAS  PubMed  Google Scholar 

  36. Brenner DJ, Hickman-Brenner FW, Lee JV, Steigerwalt AG, Fanning GR, Hollis DG, Farmer JJ, Weaver RE, Joseph SW, Seidler RJ (1983) Vibrio furnissii (formerly aerogenic biogroup of Vibrio fluvialis), a new species isolated from human feces and the environment. J Clin Microbiol 18(4):816–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lu X, Liang W, Wang Y, Xu J, Zhu J, Kan B (2014) Identification of genetic bases of Vibrio fluvialis species-specific biochemical pathways and potential virulence factors by comparative genomic analysis. Appl Environ Microbiol 80(6):2029–2037

    Article  PubMed  PubMed Central  Google Scholar 

  38. Miyashiro T, Ruby EG (2012) Shedding light on bioluminescence regulation in Vibrio fischeri. Mol Microbiol 84(5):795–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhou D, Yan X, Qu F, Wang L, Zhang Y, Hou J, Hu Y, Li J, Xin S, Qiu J, Yang R, Mao P (2013) Quorum sensing modulates transcription of cpsQ-mfpABC and mfpABC in Vibrio parahaemolyticus. Int J Food Microbiol 166(3):458–463

    Article  CAS  PubMed  Google Scholar 

  40. García-Aljaro C, Melado-Rovira S, Milton DL, Blanch AR (2012) Quorum-sensing regulates biofilm formation in Vibrio scophthalmi. BMC Microbiol 12(1):1–9

    Article  Google Scholar 

  41. Higgins DA, Pomianek ME, Kraml CM, Taylor RK, Semmelhack MF, Bassler BL (2007) The major Vibrio cholerae autoinducer and its role in virulence factor production. Nature 450(7171):883–886

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or nonprofit sectors.

Author information

Authors and Affiliations

Authors

Contributions

The authors’ contribution to this manuscript is as follows: Jin conceptualized and designed the study. Bao prepared materials, collected data and carried out chromatographic analysis. Guo wrote the first draft of the manuscript. Li and Shi provided the resources and significant input on the data interpretation. All authors critically revised all versions of the manuscript, and approved the final manuscript.

Corresponding author

Correspondence to Lei Jin.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Consent for Publication

Not applicable.

Research Involving Human Participants and/or Animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5832 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, J., Guo, D., Jin, L. et al. Accurate Identification of Diverse N-acyl Homoserine Lactones in Marine Vibrio fluvialis by UHPLC-MS/MS. Curr Microbiol 79, 181 (2022). https://doi.org/10.1007/s00284-022-02879-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02879-5

Navigation