Skip to main content
Log in

Effect of baffle structure on flow field characteristics of orbitally shaken bioreactor

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Disposable orbitally shaken bioreactors have been widely used for mammalian cell culture in suspension. Three kinds of baffle structures: vertical baffle, inclined baffle and horizontal baffle were designed in this work. The flow fields of the shaking bioreactor with different baffle structures were simulated, and the turbulence, dissolved oxygen and shear strain rate of the bioreactor were analyzed. The results showed that the quasi-steady-state flow patterns of the unbaffled shaking bioreactors were broken for the bioreactors with the strengthening effects of baffles. The mixing and the oxygen volumetric mass transfer coefficient (kLa) (simulated results) were improved significantly, and the shear strain rates were also increased greatly for the baffle bioreactors. The shear strain rates of the baffle bioreactors were mainly in the range of 0–20 s−1, and they were still low enough for CHO cell cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Liu C, Hong L (2001) Development of a shaking bioreactor system for animal cell cultures. Biochem Eng J 7:121–125

    Article  CAS  PubMed  Google Scholar 

  2. Stettler M, Zhang X, Hacker DL, De Jesus M, Wurm FM (2007) Novel orbital shake bioreactors for transient production of CHO derived IgGs. Biotechnol Prog 23:1340–1346

    Article  CAS  PubMed  Google Scholar 

  3. Jia Q, Li HC, Hui MZ, Hui N, Joudi A, Rishton G, Bao L, Shi M, Zhang XQ, Li LF, Xu JY, Leng GQ (2008) A bioreactor system based on a novel oxygen transfer method. Bioprocess Int 6:66–71

    CAS  Google Scholar 

  4. Zhu LK, Monteil DT, Wang YK, Song BY, Hacker DL, Wurm MJ, Li XB, Wang ZL, Wurm FM (2018) Fluid dynamics of flow fields in a disposable 600-mL orbitally shaken bioreactor. Biochem Eng J 129:84–95

    Article  CAS  Google Scholar 

  5. Lu ZM, Wang K, Jin GF, Huang K, Huang JF (2018) CFD studies on hydrodynamic characteristics of shaking bioreactors with wide conical bottom. J Chem Technol Biotechnol 93:810–817

    Article  CAS  Google Scholar 

  6. Monteil DT, Tontodonati G, Ghimire S, Baldi L, Hacker DL, Burki CA, Wurm FM (2013) Disposable 600-mL orbitally shaken bioreactor for mammalian cell cultivation in suspension. Biochem Eng J 76:6–12

    Article  CAS  Google Scholar 

  7. Monteil DT, Shen X, Tontodonati G, Baldi L, Hacker DL, Wurm FM (2016) Disposable orbitally shaken TubeSpin bioreactor 600 for Sf9 cell cultivation in suspension. Anal Biochem 505:26–28

    Article  CAS  PubMed  Google Scholar 

  8. Zhang X, Stettler M, Reif O, Kocourek A, DeJesus M, Hacker DL, Wurm FM (2008) Shaken helical track bioreactors: providing oxygen to high-density cultures of mammalian cells at volumes up to 1000 L by surface aeration with air. New Biotechnol 25:68–75

    Article  Google Scholar 

  9. Pericleous KA, Patel M (1987) The modeling of tangential and axial agitators in chemical reactors. Pch Physicochem Hydrodyn 8:105–123

    CAS  Google Scholar 

  10. Bai L, Zhang SX, Tang Y (2008) Performance of the bottom bioreactor in mammalian cell suspension culture. J East China Univ Sci Technol Nat Sci Edn 3:338–341

    Google Scholar 

  11. Hang HF, Guo YX, Liu J, Bai L, Xia JY, Guo MJ, Hui M (2011) Computational fluid dynamics modeling of an inverted frustoconical shaking bioreactor for mammalian cell suspension culture. Biotechnol Bioprocess Eng 16:567–575

    Article  Google Scholar 

  12. Zhang XW, Stettler M, De Sanctis D, Perrone M, Parolini N, Discacciati M, De Jesus M, Hacker D, Quarteroni A, Wurm F (2009) Use of orbital shaken disposable bioreactors for mammalian cell cultures from the milliliter-scale to the 1,000-liter scale. Adv Biochem Eng Biotechnol 115:33–53

    CAS  PubMed  Google Scholar 

  13. Zhang XW, Stettler M, Reif O, Kocourek A, De Jesus M, Hacker DL, Wurm FM (2010) Helical tracks in shaken cylindrical bioreactors improve oxygen transfer and increase maximum cell density obtainable for suspension cultures of mammalian cells. Esact Proc 4:187–191

    Google Scholar 

  14. Hei AQ (2013) The flow field simulation and analysis of shaking helical bioreactor. Master Thesis. Harbin Institute of Technology, Harbin, Heilongjiang, China

  15. Zhu LK, Song BY, Wang ZL (2019) Analyzing the suitability of a baffled orbitally shaken bioreactor for cells cultivation using the computational fluid dynamics approach. Biotechnol Prog 35:1–7

    Google Scholar 

  16. Li C, Xia JY, Chu J, Wang YH, Zhuang YP, Zhang SL (2013) CFD analysis of the turbulent flow in baffled shake flasks. Biochem Eng J 70:140–150

    Article  CAS  Google Scholar 

  17. Werner S, Olownia J, Egger D, Eibl D (2013) An approach for scale-up of geometrically dissimilar orbitally shaken single-use bioreactors. Chem Ing Tech 85:118–126

    Article  CAS  Google Scholar 

  18. Brackbill J, Kothe D, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100:335–354

    Article  CAS  Google Scholar 

  19. Peng D, Robinson D (1976) A new two-constant equation of state. Ind Eng Chem Fundam 15:59–64

    Article  CAS  Google Scholar 

  20. Garcia-Ochoa F, Gomez E (2005) Prediction of gas–liquid mass transfer coefficient in sparged stirred-tank bioreactors. Biotechnol Bioeng 92:761–772

    Article  CAS  PubMed  Google Scholar 

  21. Tabrizi HO, Amoabediny G, Moshiri B, Abbas MPH, Pouran B, Imenipour E et al (2011) Novel dynamic model for aerated shaking bioreactors. Biotechnol Appl Biochem 58:128–137

    Article  CAS  Google Scholar 

  22. Anderlei T, Mrotzek C, Bartsch S, Amoabediny G, Peter CP, Buchs J (2007) New method to determine the mass transfer resistance of sterile closures for shaken bioreactors. Biotechnol Bioeng 98:999–1007

    Article  CAS  PubMed  Google Scholar 

  23. Maier U, Buchs J (2001) Characterisation of the gas–liquid mass transfer in shaking bioreactors. Biochem Eng J 7:99–106

    Article  CAS  PubMed  Google Scholar 

  24. Kato Y, Tada Y, Iwanaga E, Nagatsu Y, Iwata S, Lee YS et al (2005) Effects of liquid film formed on flask surface on oxygen transfer rate in shaking flask and development of baffled shaking vessel by optical method based on sulfite oxidation. J Chem Eng Jpn 38:873–877

    Article  CAS  Google Scholar 

  25. Lamont JC, Scott DS (1970) An eddy cell model of mass transfer into the surface of a turbulent liquid. AIChE J 16:513–519

    Article  CAS  Google Scholar 

  26. Prasher BD, Wills GB (1973) Mass transfer in agitated vessel. Ind Eng Chem Process Des Dev 12:351–354

    Article  CAS  Google Scholar 

  27. Peter CP, Suzuki Y, Jochen B (2006) Hydromechanical stress in shake flasks: correlation for the maximum local energy dissipation rate. Biotechnol Bioeng 93(6):1164–1176

    Article  CAS  PubMed  Google Scholar 

  28. Zhou ZW, Song BY (2010) Investigation of cell mechanics and impeller optimizing in bioreactors. In: 2nd international conference on nano manufacturing, Tianjin, China

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Zhejiang Province under Grant No. LY20E050025 and Fund Project of Technology Development of Zhejiang Provincial Quality Supervision Bureau under Grant No. 20180109.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Zhiming Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Z., Li, C., Fei, L. et al. Effect of baffle structure on flow field characteristics of orbitally shaken bioreactor. Bioprocess Biosyst Eng 44, 563–573 (2021). https://doi.org/10.1007/s00449-020-02469-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02469-4

Keywords

Navigation