Skip to main content
Log in

Design of immobilized biocatalyst and optimal conditions for tyrosol β-galactoside production

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Tyrosol β-galactoside (TG) is a phenylethanoid glycoside with proven neuroprotective properties. This work deals with its biocatalytic production from tyrosol and lactose using Aspergillus oryzae β-galactosidase in immobilized form. Six commercial carriers were examined to find the optimal biocatalyst. Besides standard biocatalyst performance characteristics, adsorption of the hydrophobic substrate on immobilization carrier matrices was also investigated. The adsorption of tyrosol was significant, but it did not have adverse effects on TG production. On the contrary, TG yield was improved for some biocatalysts. A biocatalyst prepared by covalent binding of β-galactosidase on an epoxy-activated carrier was used for detailed investigation of the effect of reaction conditions on glycoside production. Temperature had a surprisingly weak effect on the overall process rate. A lactose concentration of 0.83 M was found to be optimal to enhance TG formation. The impact of tyrosol concentration was rather complex. This substrate caused inhibition of all reactions. Its concentration had a strong effect on the hydrolysis of lactose and all products. Higher tyrosol concentrations, 30–40 g/L, were favorable as pseudo-equilibrium concentrations of TG and galactooligosaccharide were reached. Repeated batch results revealed excellent operational stability of the biocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

TG:

Tyrosol β-galactoside

GOS:

Galactooligosaccharides

T:

Tyrosol

Lac:

Lactose

Glu:

Glucose

Gal:

Galactose

PS:

Polystyrene

PS–DVB:

Polystyrene–divinylbenzene

References

  1. Anter J, Tasset I, Demyda-Peyras S, Ranchal I, Moreno-Millan M, Romero-Jimenez M, Muntane J, Luque de Castro MD, Munoz-Serrano A, Alonso-Moraga A (2014) Mutat Res Genet Toxicol Environ Mutagen 772:25–33

    Article  CAS  Google Scholar 

  2. Visioli F, Poli A, Gall C (2002) Med Res Rev 22:65–75

    Article  CAS  Google Scholar 

  3. Waterman E, Lockwood B (2007) Altern Med Rev 12:331–342

    PubMed  Google Scholar 

  4. De La Cruz JP, Ruiz-Moreno MI, Guerrero A, Reyes JJ, Benitez-Guerrero A, Espartero JL, Gonzalez-Correa JA (2015) J Agric Food Chem 63:5957–5963

    Article  Google Scholar 

  5. Richard N, Arnold S, Hoeller U, Kilpert C, Wertz K, Schwager J (2011) Planta Med 77:1890–1897

    Article  CAS  Google Scholar 

  6. Wani TA, Masoodi FA, Gani A, Baba WN, Rahmanian N, Akhter R, Wani IA, Ahmad M (2018) Trends Food Sci Technol 77:77–90

    Article  CAS  Google Scholar 

  7. Mateos R, Trujillo M, Pereira-Caro G, Madrona A, Cert A, Espartero JL (2008) J Agric Food Chem 56:10960–10966

    Article  CAS  Google Scholar 

  8. Atochin DN, Chernysheva GA, Smolyakova VI, Osipenko AN, Logvinov SV, Zhdankina AA, Sysolyatin SV, Kryukov YA, Anfinogenova Y, Plotnikova TM, Plotnikov MB (2016) Phytomedicine 23:784–792

    Article  CAS  Google Scholar 

  9. Khodanovich MY, Kisel AA, Chernysheva GA, Smol'yakova VI, Kudabaeva MS, Krutenkova EP, Tyumentseva Ycapital AC, Plotnikov MB (2019) Bull Exp Biol Med 168:224–228

    Article  CAS  Google Scholar 

  10. Omar SH, Kerr PG, Scott CJ, Hamlin AS, Obied HK (2017) Molecules 22:1858–1878

    Article  Google Scholar 

  11. St-Laurent-Thibault C, Arseneault M, Longpré F, Ramassamy C (2011) Curr Alzheimer Res 8:543–551

    Article  CAS  Google Scholar 

  12. de la Torre R (2008) Inflammopharmacology 16:245–247

    Article  Google Scholar 

  13. Lee DH, Kim YJ, Kim MJ, Ahn J, Ha TY, Lee SH, Jang YJ, Jung CH (2016) Molecules 21:E128

    Article  Google Scholar 

  14. Rodriguez-Morato J, Boronat A, Kotronoulas A, Pujadas M, Pastor A, Olesti E, Perez-Mana C, Khymenets O, Fito M, Farre M, de la Torre R (2016) Drug Metab Rev 48:218–236

    Article  CAS  Google Scholar 

  15. Kang J, Kim YM, Kim N, Kim DW, Nam SH, Kim D (2009) Appl Microbiol Biotechnol 83:1009–1016

    Article  CAS  Google Scholar 

  16. Prodanović R, Milosavić N, Sladić D, Zlatović M, Božić B, Ćirković Veličković T, Vujčić Z (2005) J Mol Catal B Enzym 35:142–146

    Article  Google Scholar 

  17. Torres P, Poveda A, Jimenez-Barbero J, Parra JL, Comelles F, Ballesteros AO, Plou FJ (2011) Adv Synth Catal 353:1077–1086

    Article  CAS  Google Scholar 

  18. Palmeri A, Mammana L, Tropea MR, Gulisano W, Puzzo D (2016) J Alzheimers Dis 52:65–75

    Article  CAS  Google Scholar 

  19. Yu K, Zhao X, Wu W, Hong Z (2013) Tetrahedron Lett 54:2788–2790

    Article  CAS  Google Scholar 

  20. Shi T, Chen H, Jing L, Liu X, Sun X, Jiang R (2011) Synth Commun 41:2594–2600

    Article  CAS  Google Scholar 

  21. Herrera-Gonzalez A, Nunez-Lopez G, Morel S, Amaya-Delgado L, Sandoval G, Gschaedler A, Remaud-Simeon M, Arrizon J (2017) Appl Microbiol Biotechnol 101:5223–5234

    Article  CAS  Google Scholar 

  22. Potocká E, Mastihubová M, Mastihuba V (2015) J Mol Catal B Enzym 113:23–28

    Article  Google Scholar 

  23. Yang XP, Wang FF, Yan J, Ma K, Mao DB (2017) Biotechnol Appl Biochem 64:525–531

    Article  CAS  Google Scholar 

  24. Yu HL, Xu JH, Lu WY, Lin GQ (2008) J Biotechnol 133:469–477

    Article  CAS  Google Scholar 

  25. Bassanini I, Krejzova J, Panzeri W, Monti D, Kren V, Riva S (2017) Chemsuschem 10:2040–2045

    Article  CAS  Google Scholar 

  26. Hollá V, Antošová M, Karkeszová K, Mastihuba V, Polakovič M (2019) Biotechnol J 14:e1800571

    Article  Google Scholar 

  27. Karnišová Potocká E, Mastihubová M, Mastihuba V (2019) Biocatal Biotransform 37:18–24

    Article  Google Scholar 

  28. Qi T, Gu G, Xu L, Xiao M, Lu L (2017) Appl Microbiol Biotechnol 101:4995–5003

    Article  CAS  Google Scholar 

  29. Shi TY, Feng SF, Xing JH, Wu YM, Li XQ, Zhang N, Tian Z, Liu SB, Zhao MG (2012) Neurotox Res 21:358–367

    Article  CAS  Google Scholar 

  30. Deng Y, Wang Q, Liu X, Wang Y, Ding Z (2011) Arzneimittelforschung 61:435–438

    Article  CAS  Google Scholar 

  31. Nam SH, Park J, Jun W, Kim D, Ko JA, Abd El-Aty AM, Choi JY, Kim DI, Yang KY (2017) AMB Express 7:224

    Article  Google Scholar 

  32. Nieto-Dominguez M, de Eugenio LI, Penalver P, Belmonte-Reche E, Morales JC, Poveda A, Jimenez-Barbero J, Prieto A, Plou FJ, Martinez MJ (2017) J Agric Food Chem 65:10526–10533

    Article  CAS  Google Scholar 

  33. Nunez-Lopez G, Herrera-Gonzalez A, Hernandez L, Amaya-Delgado L, Sandoval G, Gschaedler A, Arrizon J, Remaud-Simeon M, Morel S (2019) Enzyme Microb Technol 122:19–25

    Article  CAS  Google Scholar 

  34. Adamíková J, Antošová M, Polakovič M (2019) Biotechnol J 14:e1800120

    Article  Google Scholar 

  35. Polakovič M, Švitel J, Bučko M, Filip J, Neděla V, Ansorge-Schumacher MB, Gemeiner P (2017) Biotechnol Lett 39:667–683

    Article  Google Scholar 

  36. Zor T, Selinger Z (1996) Anal Biochem 236:302–308

    Article  CAS  Google Scholar 

  37. Šimko I, Roriz E, Gramblička M, Illeová V, Polakovič M (2015) Food Bioprod Process 95:254–263

    Article  Google Scholar 

  38. Ghazi I, De Segura AG, Fernández-Arrojo L, Alcalde M, Yates M, Rojas-Cervantes ML, Plou FJ, Ballesteros A (2005) J Mol Catal B Enzym 35:19–27

    Article  CAS  Google Scholar 

  39. Sheldon RA, van Pelt S (2013) Chem Soc Rev 42:6223–6235

    Article  CAS  Google Scholar 

  40. Tanriseven A, Aslan Y (2005) Enzyme Microb Technol 36:550–554

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic for Structural Funds of EU (Grant number: ITMS 26240220084), Slovak Research and Development Agency (Grant number: APVV-18-0188), and the Slovak Grant Agency for Science (Grant number: VEGA 1/0573/17). Ms. Alessandra Basso from Purolite company is acknowledged for kindly providing their carriers. Dr. Vladimír Mastihuba is kindly acknowledged for providing the tyrosol-β-d-galactoside standard.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Polakovič.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 612 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hollá, V., Hill, R., Antošová, M. et al. Design of immobilized biocatalyst and optimal conditions for tyrosol β-galactoside production. Bioprocess Biosyst Eng 44, 93–101 (2021). https://doi.org/10.1007/s00449-020-02425-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02425-2

Keywords

Navigation