Skip to main content
Log in

Lactic acid production by loofah-immobilized Rhizopus oryzae through one-step fermentation process using starch substrate

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Rhizopus oryzae PTCC 5263 capacity in synthesis of lactic acid (LA) from 10 g/l of soluble potato starch was determined using one-step fermentation process. Pellets were the favorable growing form of the free cells. The extent of the natural ability of the test fungus on biofilm formation on loofah sponge was examined by immobilizing R. oryzae (LIRO). The maximum LA concentration for the free cells and LIRO within 96 h was 3 and 4 g/l, respectively. In terms of specific starch utilization rate (\(q_{\text{s}}\)) and specific LA formation (\(q_{\text{p}}\)), LIRO performed more favorably compared to the free cells (\(q_{{{\text{s}}_{\text{F}} }} > q_{{{\text{s}}_{\text{LIRO}} }}\) and \(q_{{{\text{p}}_{\text{F}} }} < q_{{{\text{p}}_{\text{LIRO}} }}\)). Cell immobilization strategy was undertaken for the column reactor studies based on the statistically optimized levels of the inoculum size and temperature. Maximum production of the LA by the LIRO using an airlift reactor with net draft tube was 5 g/l obtainable within 48 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Komesu A, De Oliveira JAR, Da Silva Martins LHS, Wolf Maciel MR, Filho RM (2017) Lactic acid production to purification: a review. BioResources 12:4364–4383

    CAS  Google Scholar 

  2. Tian X, Wang Y, Chu J, Zhuang Y, Zhang S (2014) l-Lactic acid production benefits from reduction of environmental osmotic stress through neutralizing agent combination. Bioprocess Biosyst Eng 37:1917–1923

    CAS  PubMed  Google Scholar 

  3. Dziezak JD (2016) In: Caballero B, Finglas PM, Toldrá F (eds) Encyclopedia of food and health, 1st edn. Academic Press, New York

    Google Scholar 

  4. Martinez FAC, Balciunas EM, Salgado JM, Gonzalez JMD, Converti A, De Souza Oliveira RP (2013) Lactic acid properties, applications and production: a review. Trends Food Sci Technol 30:70–83

    CAS  Google Scholar 

  5. Fu Y, Sun X, Zhu H, Jiang R, Luo X, Yin L (2018) An optimized fed-batch culture strategy integrated with a one-step fermentation improves l-lactic acid production by Rhizopus oryzae. World J Microbiol Biotechnol 34:74

    PubMed  Google Scholar 

  6. Fu YQ, Yin LF, Zhu HY, Jiang R (2016) High-efficiency l-lactic acid production by Rhizopus oryzae using a novel modified one-step fermentation strategy. Biores Technol 218:410–417

    CAS  Google Scholar 

  7. Wu X, Jiang Sh, Liu M, Pan L, Zheng Zh, Luo Sh (2011) Production of l-lactic acid by Rhizopus oryzae using semicontinuous fermentation in bioreactor. J Ind Microbiol Biotechnol 38:565–571

    CAS  PubMed  Google Scholar 

  8. Huang LP, Jin B, Lant P, Zhou J (2005) Simultaneous saccharification and fermentation of potato starch wastewater to lactic acid by Rhizopus oryzae and Rhizopus arrhizus. Biochem Eng J 23:265–276

    CAS  Google Scholar 

  9. Zhang Zh, Xie Y, He X, Li X, Hu J, Ruan Zh, Zhao Sh, Peng N, Liang Y (2016) Comparison of high-titer lactic acid fermentation from NaOH and NH3-H2O2-pretreated corncob by Bacillus coagulans using simultaneous saccharification and fermentation. Sci Rep 6:37245

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Stanier R, Adelberg E, Ingraham J (1976) General microbiology, 4th edn. The Macmillan Press Ltd, London

    Google Scholar 

  11. Krishna B, Sai Nikhilesh G, Tarun B, Saibaba KVN, Gopinadh R (2018) Industrial production of lactic acid and its applications. Int J Biotechnol Res 1:42–54

    Google Scholar 

  12. Gómez-Gómez J, Giraldo-Estrada C, Habeych D, Baena S (2015) Evaluation of biological production of lactic acid in a synthetic medium and in Aloe vera (L.) Burm. f. processing by-products. Univ Sci 20:369–385

    Google Scholar 

  13. Ghosh B, Rani Ray R (2011) Current commercial perspective of Rhizopus oryzae: a review. J Appl Sci 11:2470–2486

    Google Scholar 

  14. Veiter L, Rajamanickam V, Herwig C (2018) The filamentous fungal pellet relationship between morphology and productivity. Appl Microbiol Biotechnol 102:2997–3006

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang J, Zhang J (2016) The filamentous fungal pellet and forces driving its formation. Crit Rev Biotechnol 36:1066–1077

    CAS  PubMed  Google Scholar 

  16. Feng KC, Rou TM, Liu BL, Tzeng YM, Chang YN (2004) Effect of fungal pellet size on the high yield production of destruxin B by Metarhizium anisopliae. Enzyme Microb Technol 34:22–25

    Google Scholar 

  17. Yen HW, Kang JL (2010) Lactic acid production directly from starch in a starch-controlled fed-batch operation using Lactobacillus amylophilus. Bioprocess Biosyst Eng 33:1017–1023

    CAS  PubMed  Google Scholar 

  18. Phrueksawan P, Kulpreecha S, Sooksai S, Thongchul N (2012) Direct fermentation of l(+)-lactic acid from cassava pulp by solid state culture of Rhizopus oryzae. Bioprocess Biosyst Eng 35:1429–1436

    CAS  PubMed  Google Scholar 

  19. Iqbal M, Saeed A, Edyvean RGJ, O’Sullivan B, Styring P (2005) Production of fungal biomass immobilized loofah sponge (FBILS)-discs for the removal of heavy metal ions and chlorinated compounds from aqueous solution. Biotechnol Lett 27:1319–1323

    CAS  PubMed  Google Scholar 

  20. Sattari S, Vahabzadeh F, Aghtaei HK (2015) Performance of loofa-immobilized Rhizopus oryzae in the enzymatic production of biodiesel with use of oleic acid in n-hexane medium. Braz J Chem Eng 32:367–376

    CAS  Google Scholar 

  21. Ahmadi M, Vahabzadeh F, Bonakdarpour B, Mehranian M (2006) Empirical modeling of olive oil mill wastewater treatment using loofa-immobilized Phanerochaete chrysosporium. Process Biochem 41:1148–1154

    CAS  Google Scholar 

  22. Freitas C, Teixeira JA (1998) Hydrodynamic studies in an airlift reactor with an enlarged degassing zone. Bioprocess Eng 18:267–279

    CAS  Google Scholar 

  23. Green DW, Perry RH (2007) Perry’s chemical engineers’ handbook, 8th edn. McGraw-Hill, New York

    Google Scholar 

  24. Ranjbar S, Khesali Aghtaei H, Jalilnejad E, Vahabzadeh F (2016) Application of an airlift reactor with a net draft tube in phenol biooxidation using Ralstonia eutropha. Desalin Water Treat 57:25972–25984

    CAS  Google Scholar 

  25. Hsiun DY, Wu WT (1995) Transfer and liquid mixing in an airlift reactor with a net draft tube. Bioprocess Eng 12:221–225

    Google Scholar 

  26. Wu WT, Wu JY (1990) Airlift reactor with net draught tube. J Ferment Bioeng 70:359–361

    CAS  Google Scholar 

  27. Tung HL, Chiou SY, Tu CC, Wu WT (1997) An airlift reactor with double net draft tubes and its application in fermentation. Bioprocess Eng 17:1–5

    CAS  Google Scholar 

  28. Kimberley AC, Taylor C (1996) A simple colorimetric assay for muramic acid and lactic acid. Appl Biochem Biotechnol 56:49–58

    Google Scholar 

  29. Bergmeyer HU (1983) Methods of enzymatic analysis, 3rd edn. Verlag Chemie, Deerfield Beach

    Google Scholar 

  30. King TJ, Reiss M (2001) Practical advanced biology, 2nd edn. Nelson Thornes, Cheltenham

    Google Scholar 

  31. Pimstone NR (1964) Study of the starch–iodine complex: a modified colorimetric micro determination of amylase in biologic fluids. Clin Chem 10:891–906

    CAS  PubMed  Google Scholar 

  32. Huang L, Jin B, Lant P, Zhou J (2003) Biotechnological production of lactic acid integrated with potato wastewater treatment by Rhizopus arrhizus. J Chem Technol Biotechnol 28:899–906

    Google Scholar 

  33. Büyükkileci AO, Hamamci H, Yucel M (2006) Lactate and ethanol productions by Rhizopus oryzae ATCC 9363 and activities of related pyruvate branch point enzymes. J Biosci Bioeng 102:464–466

    PubMed  Google Scholar 

  34. Fu YQ, Yin LF, Jiang R, Zhu HY, Ruan QC (2015) In: Zhang T, Nakajima M (eds) Advances in applied biotechnology, 1st edn. Springer, Berlin

    Google Scholar 

  35. Meussen BJ, De Graaff LH, Sanders JPM, Weusthuis RA (2012) Metabolic engineering of Rhizopus oryzae for the production of platform chemicals. Appl Microbiol Biotechnol 94:875–886

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang ZY, Jin B, Kelly JM (2007) Effects of cultivation parameters on the morphology of Rhizopus arrhizus and the lactic acid production in a bubble column reactor. Eng Life Sci 7:490–496

    CAS  Google Scholar 

  37. Xu Q, Fu Y, Li S, Jiang L, Rongfeng G, Huang H (2018) Integrated transcriptomic and metabolomic analysis of Rhizopus oryzae with different morphologies. Process Biochem 64:74–82

    CAS  Google Scholar 

  38. Ranjit C, Srividya S (2016) Lactic acid production from free and Polyurethane immobilized cells of Rhizopus oryzae MTCC 8784 by direct hydrolysis of starch and agro-industrial waste. Int Food Res J 23:2646–2652

    CAS  Google Scholar 

  39. Sahu K, McNeill VF, Eisenthal KB (2010) Effect of salt on the adsorption affinity of an aromatic carbonyl molecule to the air–aqueous interface: insight for aqueous environmental interfaces. J Phys Chem C 114:18258–18262

    CAS  Google Scholar 

  40. Schugerl K, Lucke J, Lehmann J, Wagner F (1970) Advances in biochemical engineering, vol 8. Springer, Berlin

    Google Scholar 

  41. Denny M (2009) Froth: the science of beer. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  42. Kunz W (2010) Specific ion effects in colloidal and biological systems. Curr Opin Colloid Interface Sci 15:34–39

    CAS  Google Scholar 

  43. Firouzi M, Howes T, Nguyen AV (2014) A quantitative review of the transition salt concentration for inhibiting bubble coalescence. Adv Colloid Interface Sci 222:305–318

    PubMed  Google Scholar 

  44. Miron AS, Garcia MCC, Camacho FG, Grima EM, Chisti Y (2004) Mixing in bubble column and airlift reactors. Chem Eng Res Des 82:1367–1374

    CAS  Google Scholar 

  45. Lapin LL (1997) Modern engineering statistics, 1st edn. Duxbury Press, Belmont

    Google Scholar 

  46. Bai DM, Jia MZ, Zhao XM, Ban R, Shen F, Li XG, Xu SM (2003) l(+)-Lactic acid production by pellet-form Rhizopus oryzae R1021 in a stirred tank fermentor. Chem Eng Sci 58:785–791

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzaneh Vahabzadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahri, S.Z., Vahabzadeh, F. & Mogharei, A. Lactic acid production by loofah-immobilized Rhizopus oryzae through one-step fermentation process using starch substrate. Bioprocess Biosyst Eng 43, 333–345 (2020). https://doi.org/10.1007/s00449-019-02231-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-019-02231-5

Keywords

Navigation