Skip to main content
Log in

Two stirred-tank bioreactors in series enable continuous production of alcohols from carbon monoxide with Clostridium carboxidivorans

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Microbial batch production of alcohols by fermentation of CO-rich gases with Clostridia is limited by low volumetric productivities due to the need for formation of organic acids first (acidogenic phase) followed by re-consumption of the acids to form alcohols (solventogenic phase). Continuous autotrophic production of alcohols was made possible with C. carboxidivorans by use of two continuously operated stirred-tank bioreactors in series without cell retention. The pH in the first reactor was controlled to pH 6.0 for continuous growth of the cells. Steady-state concentrations of 3.0 g L−1 acetate and 0.1 g L−1 butyrate were measured at a mean hydraulic residence time of 8.3 h. The pH in the second reactor was controlled to pH 5.0 for enhancing continuous formation of alcohols resulting in steady-state concentrations of 6.1 g L−1 ethanol, 0.7 g L−1 butanol, and 0.1 g L−1 hexanol at a mean hydraulic residence time of 12.5 h. Continuous formation of alcohols from CO was already observed in the first stirred-tank reactor parallel to the formation of acids, whereas re-consumption of acids as well as de-novo syntheses of alcohols from CO was shown in the second stirred-tank reactor. Thus, high final alcohol-to-acid ratios of 3.9 gethanol gacetate−1 and 4.4 gbutanol gbutyrate−1 were achieved in the continuous syngas-fermentation process with C. carboxidivorans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Daniell J, Köpke M, Simpson S (2012) Commercial biomass syngas fermentation. Energies 5/12:5372–5417

    Article  CAS  Google Scholar 

  2. Wan N, Sathish A, Le Y, Tang YJ et al (2017) Deciphering Clostridium metabolism and its responses to bioreactor mass transfer during syngas fermentation. Sci Rep 7/1:10090

    Article  Google Scholar 

  3. Ramachandriya KD, Kundiyana DK, Wilkins MR, Terrill JB et al (2013) Carbon dioxide conversion to fuels and chemicals using a hybrid green process. Appl Energy 112:289–299

    Article  CAS  Google Scholar 

  4. Phillips JR, Atiyeh HK, Tanner RS, Torres JR et al (2015) Butanol and hexanol production in Clostridium carboxidivorans syngas fermentation: medium development and culture techniques. Biores Technol 190:114–121

    Article  CAS  Google Scholar 

  5. Ukpong MN, Atiyeh HK, Lorme MJM de, Liu K et al (2012) Physiological response of Clostridium carboxidivorans during conversion of synthesis gas to solvents in a gas-fed bioreactor. Biotechnol Bioeng 109/11:2720–2728

    Article  CAS  Google Scholar 

  6. Datar RP, Shenkman RM, Cateni BG, Huhnke RL et al (2004) Fermentation of biomass-generated producer gas to ethanol. Biotechnol Bioeng 86/5:587–594

    Article  CAS  Google Scholar 

  7. Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50/4:484–524

    Google Scholar 

  8. Hurst K, Lewis R (2010) Carbon monoxide partial pressure effects on the metabolic process of syngas fermentation. Biochem Eng J 48/2:159–165

    Article  CAS  Google Scholar 

  9. Herrero AA (1983) End-product inhibition in anaerobic fermentations. Trends Biotechnol 1/2:49–53

    Article  Google Scholar 

  10. Bowles LK, Ellefson WL (1985) Effects of butanol on Clostridium acetobutylicum. Appl Environ Microbiol 50/5:1165–1170

    Google Scholar 

  11. Abubackar HN, Veiga MC, Kennes C (2011) Biological conversion of carbon monoxide: rich syngas or waste gases to bioethanol. Biofuels Bioprod Biorefin 5/1:93–114

    Article  CAS  Google Scholar 

  12. Fernández-Naveira Á, Veiga MC, Kennes C (2017) H–B–E (hexanol–butanol–ethanol) fermentation for the production of higher alcohols from syngas/waste gas. J Chem Technol Biotechnol 92:712

    Article  CAS  Google Scholar 

  13. Dürre P (2007) Biobutanol: an attractive biofuel. Biotechnol J 2/12:1525–1534

    Article  CAS  Google Scholar 

  14. Lee SY, Park JH, Jang SH, Nielsen LK et al (2008) Fermentative butanol production by clostridia. Biotechnol Bioeng 101/2:209–228

    Article  CAS  Google Scholar 

  15. Bredwell MD, Srivastava P, Worden MR (1999) Reactor design issues for synthesis-gas fermentations. Biotechnol Prog 15/5:834–844

    Article  CAS  Google Scholar 

  16. Rajagopalan S, Datar RP, Lewis RS (2002) Formation of ethanol from carbon monoxide via a new microbial catalyst. Biomass Bioenerg 23/6:487–493

    Article  Google Scholar 

  17. Shen Y, Brown R, Wen Z (2014) Syngas fermentation of Clostridium carboxidivorans P7 in a hollow fiber membrane biofilm reactor: evaluating the mass transfer coefficient and ethanol production performance. Biochem Eng J 85:21–29

    Article  CAS  Google Scholar 

  18. Shen Y, Brown R, Wen Z (2014) Enhancing mass transfer and ethanol production in syngas fermentation of Clostridium carboxidivorans P7 through a monolithic biofilm reactor. Appl Energy 136:68–76

    Article  CAS  Google Scholar 

  19. Abubackar HN, Veiga MC, Kennes C (2018) Production of acids and alcohols from syngas in a two-stage continuous fermentation process. Bioresour Technol 253:227–234

    Article  CAS  PubMed  Google Scholar 

  20. Wolfe R (2011) Techniques for cultivating methanogens. Methods Enzymol 494:1–22

    Article  CAS  PubMed  Google Scholar 

  21. Groher A, Weuster-Botz D (2016) Comparative reaction engineering analysis of different acetogenic bacteria for gas fermentation. J Biotechnol 228:82–94

    Article  CAS  PubMed  Google Scholar 

  22. Kantzow C, Mayer A, Weuster-Botz D (2015) Continuous gas fermentation by Acetobacterium woodii in a submerged membrane reactor with full cell retention. J Biotechnol 212:11–18

    Article  CAS  PubMed  Google Scholar 

  23. Abubackar HN, Fernández-Naveira Á, Veiga MC, Kennes C (2016) Impact of cyclic pH shifts on carbon monoxide fermentation to ethanol by Clostridium autoethanogenum. Fuel 178:56–62

    Article  CAS  Google Scholar 

  24. Phillips JR, Klasson KT, Clausen EC, Gaddy JL (1993) Biological production of ethanol from coal synthesis gas. Appl Biochem Biotechnol 39/40:559–571

    Article  Google Scholar 

  25. Hu P, Bowen SH, Lewis RS (2011) A thermodynamic analysis of electron production during syngas fermentation. Biores Technol 102/17:8071–8076

    Article  CAS  Google Scholar 

  26. Lewis RS, Tanner RS, Huhnke RL (2006) Indirect or direct fermentation of biomass to fuel alcohol

  27. Fernández-Naveira A, Abubackar HN, Veiga MC, Kennes C (2016) Efficient butanol–ethanol (B–E) production from carbon monoxide fermentation by Clostridium carboxidivorans. Appl Microbiol Biotechnol 100/7:3361–3370

    Article  CAS  Google Scholar 

  28. Liou JS-C, Balkwill DL, Drake GR, Tanner RS (2005) Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol 55/5:2085–2091

    Article  CAS  Google Scholar 

  29. Fernández-Naveira Á, Abubackar HN, Veiga MC, Kennes C (2016) Carbon monoxide bioconversion to butanol-ethanol by Clostridium carboxidivorans: kinetics and toxicity of alcohols. Appl Microbiol Biotechnol 100/9:4231–4240

    Article  CAS  Google Scholar 

  30. Fernández-Naveira Á, Veiga MC, Kennes C (2017) Effect of pH control on the anaerobic H–B–E fermentation of syngas in bioreactors. J Chem Technol Biotechnol 92/6:1178–1185

    Article  CAS  Google Scholar 

  31. Ramió-Pujol S, Ganigué R, Bañeras L, Colprim J (2015) Incubation at 25 °C prevents acid crash and enhances alcohol production in Clostridium carboxidivorans P7. Bioresour Technol 192:296–303

    Article  CAS  PubMed  Google Scholar 

  32. Najafpour G, Younesi H (2006) Ethanol and acetate synthesis from waste gas using batch culture of Clostridium ljungdahlii. Enzyme Microbial Technol 38(1–2):223–228

    Article  CAS  Google Scholar 

  33. Vega JL, Prieto S, Elmore BB, Clausen EC et al (1989) The Biological production of ethanol from synthesis gas. Appl Biochem Biotechnol 20–21(/1):781–797

    Article  Google Scholar 

  34. Saxena J, Tanner RS (2011) Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen, Clostridium ragsdalei. J Ind Microbiol Biotechnol 38/4:513–521

    Article  CAS  Google Scholar 

  35. Mohammadi M, Younesi H, Najafpour G, Mohamed AR (2012) Sustainable ethanol fermentation from synthesis gas by Clostridium ljungdahlii in a continuous stirred tank bioreactor. J Chem Technol Biotechnol 87/6:837–843

    Article  CAS  Google Scholar 

  36. Ragsdale S (2004) Life with carbon monoxide. Crit Rev Biochem Mol Biol 39/3:165–195

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank the Federal Ministry of Education and Research (BMBF) Germany (Grant number 031A468 C) for funding. The support of Kathrin Doll by the TUM Graduate School is acknowledged as well. The authors gratefully thank Giulia Heiß and Franziska Kratzl for laboratory support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Weuster-Botz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 187 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doll, K., Rückel, A., Kämpf, P. et al. Two stirred-tank bioreactors in series enable continuous production of alcohols from carbon monoxide with Clostridium carboxidivorans. Bioprocess Biosyst Eng 41, 1403–1416 (2018). https://doi.org/10.1007/s00449-018-1969-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-018-1969-1

Keywords

Navigation