Skip to main content

Advertisement

Log in

Improved fermentation performance to produce bioethanol from Gelidium amansii using Pichia stipitis adapted to galactose

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This study employed a statistical method to obtain optimal hyper thermal acid hydrolysis conditions using Gelidium amansii (red seaweed) as a source of biomass. The optimal hyper thermal acid hydrolysis using G. amansii as biomass was determined as 12% (w/v) slurry content, 358.3 mM H2SO4, and temperature of 142.6 °C for 11 min. After hyper thermal acid hydrolysis, enzymatic saccharification was carried out. The total monosaccharide concentration was 45.1 g/L, 72.2% of the theoretical value of the total fermentable monosaccharides of 62.4 g/L based on 120 g dry weight/L in the G. amansii slurry. To increase ethanol production, 3.8 g/L 5-hydroxymethylfurfural (HMF) in the hydrolysate was removed by treatment with 3.5% (w/v) activated carbon for 2 min and fermented with Pichia stipitis adapted to high galactose concentrations via separate hydrolysis and fermentation. With complete HMF removal and the use of P. stipitis adapted to high galactose concentrations, 22 g/L ethanol was produced (yield 0.50). Fermentation with total HMF removal and yeast adapted to high galactose concentrations increased the fermentation performance and decreased the fermentation time from 96 to 36 h compared to traditional fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tenenbaum DJ (2008) Food vs. fuel: diversion of crops could cause more hunger. Environ Health Perspect 116:A254–A257

    Article  PubMed  PubMed Central  Google Scholar 

  2. Harun R, Yip JWS, Thiruvenkadam S, Ghani WAWAK., Cherrington T, Danquah MK (2014) Algal biomass conversion to bioethanol—a step-by-step assessment. Biotechnol J 9:73–86

    Article  CAS  PubMed  Google Scholar 

  3. Yanagisawa M, Kawai S, Murata K (2013) Strategies for the production of high concentrations of bioethanol from seaweeds: production of high concentrations of bioethanol from seaweeds. Bioengineered 4:224–235

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yoon JJ, Kim YJ, Kim SH, Ryu HJ, Choi JY, Kim GS, Shin MK (2010) Production of polysaccharides and corresponding sugars from red seaweed. Adv Mater Res 93–94:463–466

    Article  Google Scholar 

  5. Cho H, Ra CH, Kim S-K (2014) Ethanol production from the seaweed Gelidium amansii, using specific sugar acclimated yeasts. J Microbiol Biotechnol 24:264–269

    Article  CAS  PubMed  Google Scholar 

  6. Lenihan P, Orozco A, O’Neill E, Ahmad MNM, Rooney DW, Walker GM (2010) Dilute acid hydrolysis of lignocellulosic biomass. Chem Eng J 156:395–403

    Article  CAS  Google Scholar 

  7. Meinita MDN, Hong Y-K, Jeong G-T (2012) Detoxification of acidic catalyzed hydrolysate of Kappaphycus alvarezii (cottonii). Bioprocess Biosyst Eng 35:93–98

    Article  CAS  PubMed  Google Scholar 

  8. Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40:3693–3700

    Article  CAS  Google Scholar 

  9. Ra CH, Nguyen TH, Jeong G-T, Kim S-K (2016) Evaluation of hyper thermal acid hydrolysis of Kappaphycus alvarezii for enhanced bioethanol production. Bioresour Technol 209:66–72

    Article  CAS  PubMed  Google Scholar 

  10. Jeong G-T, Ra CH, Hong Y-K, Kim JK, Kong I-S, Kim S-K, Park D-H (2015) Conversion of red-algae Gracilaria verrucosa to sugars, levulinic acid and 5-hydroxymethylfurfural. Bioprocess Biosyst Eng 38:207–217

    Article  CAS  PubMed  Google Scholar 

  11. Liu ZL, Ma M, Song M (2009) Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways. Mol Genet Genom 282:233–244

    Article  CAS  Google Scholar 

  12. Escalante-Chong R, Savir Y, Carroll SM, Ingraham JB, Wang J, Marx CJ, Springer M (2015) Galactose metabolic genes in yeast respond to a ratio of galactose and glucose. Proc Natl Acad Sci 112:1636–1641

    Article  CAS  PubMed  Google Scholar 

  13. Yoo CG, Lee CW, Kim TH (2011) Optimization of two-stage fractionation process for lignocellulosic biomass using response surface methodology (RSM). Biomass Bioenergy 35:4901–4909

    Article  CAS  Google Scholar 

  14. Kim HJ, Ra CH, Kim S-K (2013) Ethanol production from seaweed (Undaria pinnatifida) using yeast acclimated to specific sugars. Biotechnol Bioprocess Eng 18:533–537

    Article  CAS  Google Scholar 

  15. Kubicek CP (1982) beta-Glucosidase excretion by Trichoderma pseudokoningii: correlation with cell wall bound beta-1.3-glucanase activities. Arch Microbiol 132:349–354

    Article  CAS  PubMed  Google Scholar 

  16. Mandels M, Andreotti R, Roche C (1976) Measurement of saccharifying cellulase. Biotechnol Bioeng Symp 21–33

  17. Jol CN, Neiss TG, Penninkhof B, Rudolph B, De Ruiter GA (1999) A novel high-performance anion-exchange chromatographic method for the analysis of carrageenans and agars containing 3,6-anhydrogalactose. Anal Biochem 268:213–222

    Article  CAS  PubMed  Google Scholar 

  18. Jeong TS, Kim YS, Oh KK (2011) Two-stage acid saccharification of fractionated Gelidium amansii minimizing the sugar decomposition. Bioresour Technol 102:10529–10534

    Article  CAS  PubMed  Google Scholar 

  19. Jeong G-T, Park D-H (2010) Production of sugars and levulinic acid from marine biomass Gelidium amansii. Appl Biochem Biotechnol 161:41–52

    Article  CAS  PubMed  Google Scholar 

  20. Rodrigues AC, Haven M, Lindedam J, Felby C, Gama M (2015) Celluclast and Cellic® CTec2: saccharification/fermentation of wheat straw, solid–liquid partition and potential of enzyme recycling by alkaline washing. Enzyme Microb Technol 79–80:70–77

    Article  CAS  PubMed  Google Scholar 

  21. Kim N-J, Li H, Jung K, Chang HN, Lee PC (2011) Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour Technol 102:7466–7469

    Article  CAS  PubMed  Google Scholar 

  22. Zhao X, Moates GK, Elliston A, Wilson DR, Coleman MJ, Waldron KW (2015) Simultaneous saccharification and fermentation of steam exploded duckweed: improvement of the ethanol yield by increasing yeast titre. Bioresour Technol 194:263–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guo Z, Olsson L (2014) Physiological response of Saccharomyces cerevisiae to weak acids present in lignocellulosic hydrolysate. FEMS Yeast Res 14:1234–1248

    Article  CAS  PubMed  Google Scholar 

  24. Gütsch JS, Sixta H (2011) The HiTAC-process (high temperature adsorption on activated charcoal)—new possibilities in autohydrolysate treatment. Lenzing Ber 89:142–151

    Google Scholar 

  25. Ra CH, Jung JH, Sunwoo IY, Kang CH, Jeong GT, Kim S-K (2015) Detoxification of Eucheuma spinosum hydrolysates with activated carbon for ethanol production by the salt-tolerant yeast Candida tropicalis. J Microbiol Biotechnol 25:856–862

    Article  CAS  PubMed  Google Scholar 

  26. Ra CH, Jeong G-T, Shin MK, Kim S-K (2013) Biotransformation of 5-hydroxymethylfurfural (HMF) by Scheffersomyces stipitis during ethanol fermentation of hydrolysate of the seaweed Gelidium amansii. Bioresour Technol 140:421–425

    Article  CAS  PubMed  Google Scholar 

  27. Nguyen TH, Ra CH, Sunwoo IY, Jeong GT, Kim S-K (2016) Evaluation of galactose adapted yeasts for bioethanol fermentation from Kappaphycus alvarezii hydrolyzates. J Microbiol Biotechnol 26:1259–1266

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (2016R1D1A1A09918683), Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Koo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukwong, P., Ra, C.H., Sunwoo, I.Y. et al. Improved fermentation performance to produce bioethanol from Gelidium amansii using Pichia stipitis adapted to galactose. Bioprocess Biosyst Eng 41, 953–960 (2018). https://doi.org/10.1007/s00449-018-1926-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-018-1926-z

Keywords

Navigation