Skip to main content

Advertisement

Log in

Influence of different chemical pretreatments of elephant grass (Pennisetum purpureum, Schum.) used as a substrate for cellulase and xylanase production in submerged cultivation

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This study evaluated the potential use of elephant grass biomass, a highly productive species, for cellulase and xylanase production by the cellulolytic mutant Penicillium echinulatum 9A02S1 in submerged cultivation, using untreated biomass, biomass pretreated with different concentrations of NaOH, H2SO4 or NH4OH, or biomass pretreated with H2O at 121 °C. For filter paper activity, all cultivation carried out with pretreated elephant grass under the evaluated conditions showed superior activity when compared with the control (untreated elephant grass). The activities of endoglucanases and β-glucosidases were higher in the cultivation prepared from pretreated samples than the control made with cellulose (Celuflok®). Without pretreatment, elephant grass can be used for xylanase production, enabling similar activities to those obtained in the cultivation with cellulose, reducing the enzyme production cost. These results indicate that the pretreatment of elephant grass, especially when pretreated with H2SO4, may be used as a partial or total replacement for cellulose to cellulase production, and untreated elephant grass may be used for xylanase production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adsul MG, Ghule JE, Singh R, Shaikh H, Bastawde KB, Gokhale DV, Varma AJ (2004) Polysaccharides from bagasse: applications in cellulase and xylanase production. Carbohyd Polym 57:67–72

    Article  CAS  Google Scholar 

  2. Almeida JM, Lima VA, Giloni-Lima PC, Knob A (2015) Canola meal as a novel substrate for β-glucosidase production by Trichoderma viride: application of the crude extract to biomass saccharification. Bioprocess Biosyst Eng 38:1889–1902

    Article  CAS  Google Scholar 

  3. Aro N, Saloheimo A, Ilmen M, Penttila M (2001) ACEII, a novel transcriptional activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei. J Biol Chem 276:24309–24314

    Article  CAS  Google Scholar 

  4. Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270

    Article  CAS  Google Scholar 

  5. Balsan G, Astolfi V, Benazzi T, Meireles MA, Maugeri F, Di Luccio M, Dal Prá V, Mossi A, Treichel H, Mazutti M (2012) Characterization of a commercial cellulase for hydrolysis of agroindustrial substrates. Bioprocess Biosyst Eng 35:1229–1237

    Article  CAS  Google Scholar 

  6. Basso V, Machado JC, da Silva Lédo FJ, da Costa Carneiro J, Fontana RC, Dillon AJP, Camassola M (2014) Different elephant grass (Pennisetum purpureum) accessions as substrates for enzyme production for the hydrolysis of lignocellulosic materials. Biomass Bioenerg 71:155–161

    Article  CAS  Google Scholar 

  7. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  8. Camassola M, De Bittencourt LR, Shenem NT, Andreaus J, Dillon AJP (2004) Characterization of the cellulase complex of Penicillium echinulatum. Biocatal Biotransf 22:391–396

    Article  CAS  Google Scholar 

  9. Camassola M, Dillon AJ (2010) Cellulases and xylanases production by Penicillium echinulatum grown on sugar cane bagasse in solid-state fermentation. Appl Biochem Biotechnol 162:1889–1900

    Article  CAS  Google Scholar 

  10. Camassola M, Dillon AJ (2007) Production of cellulases and hemicellulases by Penicillium echinulatum grown on pretreated sugar cane bagasse and wheat bran in solid-state fermentation. J Appl Microbiol 103:2196–2204

    Article  CAS  Google Scholar 

  11. Camassola M, Dillon AJP (2009) Biological pretreatment of sugar cane bagasse for the production of cellulases and xylanases by Penicillium echinulatum. Ind Crops Prod 29:642–647

    Article  CAS  Google Scholar 

  12. Camassola M, Dillon AJP (2012) Cellulase determination: modifications to make the filter paper assay easy, fast, practical and efficient. doi:10.4172/scientificreports.125

  13. Camassola M, Dillon AJP (2014) Effect of different pretreatment of sugar cane bagasse on cellulase and xylanases production by the mutant Penicillium echinulatum 9A02S1 grown in submerged culture. BioMed Res Int. doi:10.1155/2014/720740

    Google Scholar 

  14. Camassola M, Dillon AJP (2012) Steam-exploded sugar cane bagasse for on-site production of cellulases and xylanases by Penicillium echinulatum. Energy Fuels 26:5316–5320

    Article  CAS  Google Scholar 

  15. Chahal DS (1985) Solid-state fermentation with Trichoderma reesei for cellulase production. Appl Environ Microbiol 49:205–210

    CAS  Google Scholar 

  16. Daroit DJ, Simonetti A, Hertz PF, Brandelli A (2008) Purification and characterization of an extracellular beta-glucosidase from Monascus purpureus. J Microbiol Biotechnol 18:933–941

    CAS  Google Scholar 

  17. Dillon AJ, Bettio M, Pozzan FG, Andrighetti T, Camassola M (2011) A new Penicillium echinulatum strain with faster cellulase secretion obtained using hydrogen peroxide mutagenesis and screening with 2-deoxyglucose. J Appl Microbiol 111:48–53

    Article  CAS  Google Scholar 

  18. Dillon AJ, Zorgi C, Camassola M, Henriques JA (2006) Use of 2-deoxyglucose in liquid media for the selection of mutant strains of Penicillium echinulatum producing increased cellulase and beta-glucosidase activities. Appl Microbiol Biotechnol 70:740–746

    Article  CAS  Google Scholar 

  19. Reis L, Fontana RC, Delabona PS, da Silva Lima DJ, Camassola M, Pradella JG, Dillon AJ (2013) Increased production of cellulases and xylanases by Penicillium echinulatum S1M29 in batch and fed-batch culture. Bioresour Technol 146:597–603

    Article  Google Scholar 

  20. Feng Y, Liu H-Q, Xu F, Jiang J-X (2011) Enzymatic degradation of steam-pretreated Lespedeza stalk (Lespedeza crytobotrya) by cellulosic-substrate induced cellulases. Bioprocess Biosyst Eng 34:357–365

    Article  CAS  Google Scholar 

  21. Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268

    CAS  Google Scholar 

  22. Jain K, Bhanja Dey T, Kumar S, Kuhad R (2015) Production of thermostable hydrolases (cellulases and xylanase) from Thermoascus aurantiacus RCKK: a potential fungus. Bioprocess Biosyst Eng 38:787–796

    Article  CAS  Google Scholar 

  23. Jørgensen H, Olsson L (2006) Production of cellulases by Penicillium brasilianum IBT 20888—effect of substrate on hydrolytic performance. Enzyme Microb Technol 38:381–390

    Article  Google Scholar 

  24. Kong F, Engler C, Soltes E (1992) Effects of cell-wall acetate, xylan backbone, and lignin on enzymatic hydrolysis of aspen wood. Appl Biochem Biotechnol 34–35:23–35

    Article  Google Scholar 

  25. Kovács K, Megyeri L, Szakacs G, Kubicek CP, Galbe M, Zacchi G (2008) Trichoderma atroviride mutants with enhanced production of cellulase and β-glucosidase on pretreated willow. Enzyme Microb Technol 43:48–55

    Article  Google Scholar 

  26. Liu G, Zhang J, Bao J (2016) Cost evaluation of cellulase enzyme for industrial-scale cellulosic ethanol production based on rigorous Aspen Plus modeling. Bioprocess Biosyst Eng 39:133–140

    Article  Google Scholar 

  27. López-Abelairas M, Álvarez Pallín M, Salvachúa D, Lú-Chau T, Martínez MJ, Lema JM (2013) Optimisation of the biological pretreatment of wheat straw with white-rot fungi for ethanol production. Bioprocess Biosyst Eng 36:1251–1260

    Article  Google Scholar 

  28. Mandels M, Reese ET (1957) Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J Bacteriol 73:269–278

    CAS  Google Scholar 

  29. Martins LF, Kolling D, Camassola M, Dillon AJ, Ramos LP (2008) Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates. Bioresour Technol 99:1417–1424

    Article  CAS  Google Scholar 

  30. Menegol D, Scholl AL, Fontana RC, Dillon AJP, Camassola M (2014) Potential of a Penicillium echinulatum enzymatic complex produced in either submerged or solid-state cultures for enzymatic hydrolysis of elephant grass. Fuel 133:232–240

    Article  CAS  Google Scholar 

  31. Menegol D, Scholl AL, Fontana RC, Dillon AJP, Camassola M (2014) Increased release of fermentable sugars from elephant grass by enzymatic hydrolysis in the presence of surfactants. Energy Convers Manag 88:1252–1256

    Article  CAS  Google Scholar 

  32. Novello M, Vilasboa J, Schneider WDH, Reis L, Fontana RC, Camassola M (2014) Enzymes for second generation ethanol: exploring new strategies for the use of xylose. RSC Adv 4:21361–21368

    Article  CAS  Google Scholar 

  33. Ortiz G, Guitart M, Cavalitt S, Albertó E, Fernández-Lahore M, Blasco M (2015) Characterization, optimization, and scale-up of cellulases production by Trichoderma reesei cbs 836.91 in solid-state fermentation using agro-industrial products. Bioprocess Biosyst Eng 38:2117–2128

    Article  CAS  Google Scholar 

  34. Reis L, Schneider W, Fontana R, Camassola M, Dillon AP (2013) Cellulase and xylanase expression in response to different pH levels of Penicillium echinulatum S1M29 medium. BioEnerg Res 7:60–67

    Article  Google Scholar 

  35. Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energ 37:19–27

    Article  CAS  Google Scholar 

  36. Schneider WD, Reis L, Camassola M, Dillon AJ (2014) Morphogenesis and production of enzymes by Penicillium echinulatum in response to different carbon sources. Biomed Res Int. doi:10.1155/2014/254863

    Google Scholar 

  37. Scholl AL, Menegol D, Pitarelo AP, Fontana RC, Filho AZ, Ramos LP, Dillon AJP, Camassola M (2015) Elephant grass (Pennisetum purpureum Schum.) pretreated via steam explosion as a carbon source for cellulases and xylanases in submerged cultivation. Ind Crops Prod 70:280–291

    Article  CAS  Google Scholar 

  38. Scholl AL, Menegol D, Pitarelo AP, Fontana RC, Filho AZ, Ramos LP, Dillon AJP, Camassola M (2015) Elephant grass pretreated by steam explosion for inducing secretion of cellulases and xylanases by Penicillium echinulatum S1M29 solid-state cultivation. Ind Crops Prod 77:97–107

    Article  CAS  Google Scholar 

  39. Scholl AL, Menegol D, Pitarelo AP, Fontana RC, Filho AZ, Ramos LP, Dillon AJP, Camassola M (2015) Ethanol production from sugars obtained during enzymatic hydrolysis of elephant grass (Pennisetum purpureum, Schum.) pretreated by steam explosion. Bioresour Technol 192:228–237

    Article  CAS  Google Scholar 

  40. Schuster A, Schmoll M (2010) Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 87:787–799

    Article  CAS  Google Scholar 

  41. Sluiter A, Hames B, Hyman D, Payne C, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008) Determination of total solids in biomass and total dissolved solids in liquid process samples. In: Technical report NREL/TP-510-42621

  42. Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of extractives in biomass. In: Technical report NREL/TP-510-42619

  43. Sternberg D, Dorval S (1979) Cellulase production and ammonia metabolism in Trichoderma reesei on high levels of cellulose. Biotechnol Bioeng 21:181–191

    Article  CAS  Google Scholar 

  44. Wan C, Zhou Y, Li Y (2011) Liquid hot water and alkaline pretreatment of soybean straw for improving cellulose digestibility. Bioresour Technol 102:6254–6259

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial and technical support from UCS, CNPq (310590/2009-4) and FAPERGS (10/1972-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marli Camassola.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 679 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menegol, D., Scholl, A.L., Dillon, A.J.P. et al. Influence of different chemical pretreatments of elephant grass (Pennisetum purpureum, Schum.) used as a substrate for cellulase and xylanase production in submerged cultivation. Bioprocess Biosyst Eng 39, 1455–1464 (2016). https://doi.org/10.1007/s00449-016-1623-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1623-8

Keywords

Navigation