Skip to main content
Log in

Optimisation of the biological pretreatment of wheat straw with white-rot fungi for ethanol production

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The biological pretreatment of lignocellulosic biomass for the production of bioethanol is an environmentally friendly alternative to the most frequently used process, steam explosion (SE). However, this pretreatment can still not be industrially implemented due to long incubation times. The main objective of this work was to test the viability of and optimise the biological pretreatment of lignocellulosic biomass, which uses ligninolytic fungi (Pleurotus eryngii and Irpex lacteus) in a solid-state fermentation of sterilised wheat straw complemented with a mild alkali treatment. In this study, the most important parameters of the mechanical and thermal substrate conditioning processes and the most important parameters of the fungal fermentation process were optimised to improve sugar recovery. The largest digestibilities were achieved with fermentation with I. lacteus under optimised conditions, under which cellulose and hemicellulose digestibility increased after 21 days of pretreatment from 16 to 100 % and 12 to 87 %, respectively. The maximum glucose yield (84 %) of cellulose available in raw material was obtained after only 14 days of pretreatment with an overall ethanol yield of 74 % of the theoretical value, which is similar to that reached with SE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  CAS  Google Scholar 

  2. García-Aparicio MP, Ballesteros I, González A, Oliva JM, Ballesteros M, Negro MJ (2006) Effect of inhibitors released during steam-explosion pretreatment of barley straw on enzymatic hydrolysis. Appl Biochem Biotechnol 129–132:278–288

    Article  Google Scholar 

  3. McMillan JD (1994) Pretreatment of lignocellulosic biomass. In: Himmel ME, Baker JO, Overend RP (eds) Enzymatic conversion of biomass for fuels production. American Chemical Society, Washington, DC

    Google Scholar 

  4. Sánchez C (2008) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194

    Article  Google Scholar 

  5. Martínez AT, Ruiz-Dueñas FJ, Martínez MJ, del Río JC, Gutiérrez A (2009) Enzymatic delignification of plant cell wall: from nature to mill. Curr Opin Biotechnol 20:348–357

    Article  Google Scholar 

  6. Dorado J, Almendros G, Camarero S, Martínez AT, Vares T, Hatakka A (1999) Transformation of wheat straw in the course of solid-state fermentation by four ligninolytic basidiomycetes. Enzyme Microb Technol 25:605–612

    Article  CAS  Google Scholar 

  7. Bak JS, Ko JK, Choi I, Park Y, Seo J, Kim KH (2009) Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw. Biotechnol Bioeng 104(3):471–482

    Article  CAS  Google Scholar 

  8. Kirk TK, Farrell RL (1987) Enzymatic “combustion”. The microbial degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  CAS  Google Scholar 

  9. Salvachúa D, Prieto A, López-Abelairas M, Lu-Chau T, Martínez Á, Martínez AJ (2011) Fungal pretreatment: an alternative in second-generation ethanol from wheat straw. Bioresour Technol 102(16):7500–7506

    Article  Google Scholar 

  10. Zimbardi F, Viggiano D, Nanna F, Demichele M, Cuna D, Cardinale G (1999) Steam explosion of straw in batch and continuous systems. Appl Biochem Biotechnol 77:117–125

    Article  Google Scholar 

  11. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2007) Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure. NREL, USA

    Google Scholar 

  12. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428

    Article  CAS  Google Scholar 

  13. Dowe N, McMillan J (2001) Lignocellulosic biomass hydrolysis and fermentation. Laboratory Analytical Procedure, NREL, USA

    Google Scholar 

  14. Wariishi H, Valli K, Gold MH (1992) Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators. J Biol Chem 267(33):23688–23695

    CAS  Google Scholar 

  15. Guillén F, Martínez AT, Martínez MJ (1992) Substrate specificity and properties of the aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. Eur J Biochem 209:603–611

    Article  Google Scholar 

  16. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861

    Article  CAS  Google Scholar 

  17. Perry RH, Green DW, Maloney JO (1997) Chemical engineer handbook, 7th edn. McGraw-Hill, New York

    Google Scholar 

  18. Zimbardi F, Ricci E, Braccio G (2002) Technoeconomic study on steam explosion application in biomass processing. Appl Biochem Biotechnol 98–100:89–99

    Article  Google Scholar 

  19. Galazka JM, Tian T, Beeson WT, Martinez B, Glass NL, Cate JHD (2010) Cellodextrin transport in yeast for improved biofuel production. Science 330:384

    Google Scholar 

  20. Camarero S, Galletti GC, Martínez AT (1994) Preferential degradation of phenolic lignin units by two white rot fungi. Appl Environ Microbiol 60:4509–4516

    CAS  Google Scholar 

  21. Dinis MJ, Bezerra RMF, Nunes F, Dias AA, Guedes CV, Ferreira LMM, Cone JW, Marques GSM, Barros ARN, Rodrigues MAM (2009) Modification of wheat straw lignin by solid state fermentation with white-rot fungi. Bioresour Technol 100:4829–4835

    Article  CAS  Google Scholar 

  22. Camarero S, Bockle B, Martínez MJ, Martínez AT (1996) Manganese-mediated lignin degradation by Pleurotus pulmonarius. Appl Environ Microbiol 62:1070–1072

    CAS  Google Scholar 

  23. Guillén F, Muñoz C, Gomez-Toribio V, Martínez AT, Martínez MJ (2000) Oxygen activation during oxidation of methoxyhydroquinones by laccase from Pleurotus eryngii. Appl Environ Microbiol 66:170–175

    Article  Google Scholar 

  24. Aden A, Ruth M, Ibsen K, Jechura J, Neeves K, Sheehan J, Wallace B, Montague L, Slayton A, Lukas J (2002) Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. Technical Report, NREL, USA

    Book  Google Scholar 

  25. Dias AA, Freitas GS, Marques GSM, Sampaio A, Fraga IS, Rodrigues MAM, Evtuguin DV, Bezerra RMF (2010) Enzymatic saccharification of biologically pre-treated wheat straw with white-rot fungi. Bioresour Technol 101(15):6045–6050

    Article  CAS  Google Scholar 

  26. Taniguchi M, Suzuki H, Watanabe D, Sakai K, Hoshino K, Tanaka T (2005) Evaluation of Pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. J Biosci Bioeng 100(6):637–643

    Article  CAS  Google Scholar 

  27. Novotny C, Cajthaml T, Svobodova K, Susla M, Sasek V (2009) Irpex lacteus, a white-rot fungus with biotechnological potential: review. Folia Microbiol 54(5):375–390

    Article  CAS  Google Scholar 

  28. Zhong W, Yu H, Song L, Zhang X (2011) Combined pretreatment with white-rot fungus and alkali at near room-temperature for improving saccharification of corn stalks. Bioresour Technol 6(3):3440–3451

    CAS  Google Scholar 

  29. Palmqvist E, Hahn-Hägerdal B, Galbe M, Zacchi G (1995) The effect of water-soluble inhibitors from steam-pretreated willow on enzymatic hydrolysis and ethanol fermentation. Enzyme Microb Technol 19:470–476

    Article  Google Scholar 

  30. Ballesteros I, Negro MJ, Oliva JM, Cabañas A, Manzanares P, Ballesteros M (2006) Ethanol production from steam-explosion pretreated wheat straw. Appl Biochem Biotechnol 129–132:496–508

    Article  Google Scholar 

  31. Linde M, Jakobsson EL, Galbe M, Zacchi G (2008) Steam pretreatment of dilute H2SO4-impregnated wheat straw and SSF with low yeast and enzyme loadings for bioethanol production. Biomass Bioenergy 32:326–332

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was co-supported by the INCITE Program (Xunta de Galicia, PGIDIT07REM011E), by the CDTI (Project CEN-200910140) and by the Ministry of Economy and Competitiveness of Spain through the Local Investment Fund for Employment (Government of Spain) and was carried out in collaboration with Abengoa Bionergía Nuevas Tecnologías. The authors also thank CDTI (CENIT I + DEA Program) for additional support and Novozymes for providing commercial enzymes. T. Lu-Chau wishes to thank the I. Barreto program from the Galicia Government for economic support and D. Salvachúa thanks an FPU fellowship from the MICINN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. López-Abelairas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 124 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Abelairas, M., Álvarez Pallín, M., Salvachúa, D. et al. Optimisation of the biological pretreatment of wheat straw with white-rot fungi for ethanol production. Bioprocess Biosyst Eng 36, 1251–1260 (2013). https://doi.org/10.1007/s00449-012-0869-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-012-0869-z

Keywords

Navigation