Skip to main content
Log in

Factors affecting the activation and inhibition of intracellular enzymes for degradation of 1,2 diamino benzene: kinetics and thermodynamic studies

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Citrobacter freundii, the bacterium isolated from marine sediments was capable of degrading 1,2 diamino benzene (DAB), an endocrine disruptor. The mixed intracellular enzymes from C. freundii were extracted and purified. The mixed intracellular enzymes were used for the degradation of DAB and degree of degradation was evaluated in terms of pyruvic acid, the end product, formed. The variables such as effect of pH, temperature and metal ions on the degradation of DAB using mixed intracellular enzymes (MICE) were investigated. The maximum amount of pyruvic acid formed was found to be 569 ± 5 µg with 96 % degradation efficiency at pH 7; temperature 25 °C; zinc nitrate 0.1 mM; and copper sulphate ions 0.15 mM. The stability of MICE at different temperatures and the interaction of MICE with metal ions were confirmed using FT-IR spectroscopy. The formation of pyruvic acid from degradation of DAB followed pseudo-second-order rate kinetics and it was a spontaneous, exothermic process. The activation energy of degradation of DAB by MICE was found to be 82.55 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Eberhard Schulz MD, Thomas Munzel MD, FAHA (2011) Intracellular pH—a fundamental modulator of vascular function. Circulation 124:1806–1807

    Article  Google Scholar 

  2. Ang EL, Obbard JP, Zhao H (2009) Directed evolution of aniline dehydrogenase for enhanced bioremediation of aromatic amines. Appl Microbiol Biotechnol 81:1063–1070

    Article  CAS  Google Scholar 

  3. Susanne B (2008) Carotenoid oxygenases from Camellia sinensis, Osmanthus fragrans and Prunus persica nucipersica—kinetics and structure. Cuvillier Verlag, Gottingen

    Google Scholar 

  4. IHW (2005) Enzymes, biology mad A-level biology. http://www.biologymad.com/resources/EnzymesRevision.pdf

  5. Silva JJRFD, Williams RJP (1991) The biological chemistry of the elements. Clarendon Press, Oxford

    Google Scholar 

  6. Glusker JP, Katz AK, Bock CW (1999) Metal ions in biological systems. Rigaku J 16(2)

  7. Adalberto PR, Massabni AC, Carmona EC, Goulart AJ, Marques DP, Monti R (2010) Effect of divalent metal ions on the activity and stability of β-galactosidase isolated from Kluyveromyces lactis. J Basic Appl Pharma Sci 31:143–150

    Google Scholar 

  8. Martin chaplin (2014) Effect of pH and ionic strength. http://www1.lsbu.ac.uk/water/enztech/ph.html

  9. Fetzner S (2002) Biodegradation of Xenobiotics. Biotechnology. In: Doelle HW, Da Silva EJ (eds) Encyclopedia of life support systems (EOLSS), developed under the Auspices of the UNESCO. Eolss Publishers, Oxford

  10. de Lorenzo V, Silva Rocha R, Carbajosa G, Galvo TC, Cases I (2010) Spiro S, Dixon R (ed) Sensing xenobiotic compounds: lessons from bacteria that face pollutants in the environment. Caister Academic Press, UK

  11. Cases I, de Lorenzo V (2005) Promoters in the environment: transcriptional regulation in its natural context. Nat Rev Microbiol 3:105–118

    Article  CAS  Google Scholar 

  12. de Lorenzo V, Perez-Martin J (1996) Regulatory noise in prokaryotic promoters: how bacteria learn to respond to novel environmental signals. Mol Microbiol 19:1177–1184

    Article  Google Scholar 

  13. Cases I, de Lorenzo V, Ouzounis CA (2003) Transcription regulation and environmental adaptation in bacteria. Trends Microbiol 11:248–253

    Article  CAS  Google Scholar 

  14. Saranya P, Muneeswari R, Sekaran G (2014) Biodegradation of endocrine disrupting chemical- o-phenylene diamine using intracellular enzymes from Citrobacter freundii and its kinetic studies. J chem tech biotech. doi:10.1002/jctb.4558

    Google Scholar 

  15. Chung KT, Cerniglia CE (1992) Mutagenicity of azo dyes: structure-activity relationships. Mutat Res 277:201–220

    Article  CAS  Google Scholar 

  16. Nezamzadeh-Ejhieh A, Salimi Z (2011) Solar photocatalytic degradation of o-phenylenediamine by heterogeneous CuO/X zeolite catalyst. Desalination 280:281–287

    Article  CAS  Google Scholar 

  17. Parilti NB, Akten D (2010) Application of Box-Wilson experimental design method for the solar photocatalytic degradation of textile dyestuff with Fe(III)/H2O2/solar UV process. Desalination 260:193–198

    Article  CAS  Google Scholar 

  18. Kothari Charmy R (2006) Microbial degradation of organopollutants, Ph.D. thesis, Department of Biosciences, Saurashtra University

  19. Anthon GE, Barrett DM (2003) Modified method for the determination of pyruvic acid with dinitrophenylhydrazine in the assessment of onion pungency. J Sci Food Agric 83:1210–1213

    Article  CAS  Google Scholar 

  20. Lagergren S, Svenska BK (1898) The theory of adsorption on geloester substances. Veternskapsakad Handlingar 24:1–39

    Google Scholar 

  21. Ho YS, Mckay G (1998) Kinetic models for the sorption of dye from aqueous solution by wood. Transl chem E 76B:183–191

    Google Scholar 

  22. Fujieda N, Yabuta S, Ikeda T, Oyama T, Muraki N, Kurisu G, Itoh S (2013) Crystal structures of copper-depleted and copper-bound fungal pro-tyrosinase. J Biol Chem 288:22128–22140

    Article  CAS  Google Scholar 

  23. Vallee BL, Auld DS (1990) Active-site zinc ligands and activated H2O of zinc enzymes. Biochemistry 87:220–224

    CAS  Google Scholar 

  24. Bertini I, Gary HB, Lippard SJ, Valentine JS (1994) Bioinorganic chemistry. University Science Books, Mill Valley

    Google Scholar 

  25. Lippard SJ, Berg JM (1994) Principles of bioinorganic chemistry. University Science Books, Mill Valley

    Google Scholar 

  26. Wilson CJ, Apiyo D, Wittung-Stafshede P (2004) Role of cofactors in metalloprotein folding. Q Rev Biophy 37:285–314

    Article  CAS  Google Scholar 

  27. Golyshina OV, Golyshin PN, Timmis KN, Ferrer M (2006) The pH optimum anomaly of intracellular enzymes of Ferroplasma acidiphilum. Environ Micro 8:416–425

    Article  CAS  Google Scholar 

  28. Daniel RM, Peterson ME, Danson MJ, Price NC, Kelly SM, Monk CR, Weinberg CS, Oudshoorn ML, Lee CK (2010) The molecular basis of the effect of temperature on enzyme activity. Biochem J 425:353–360

    Article  CAS  Google Scholar 

  29. Yancey PH, Somero GN (1978) Temperature dependence of intracellular pH: its role in the conservation of pyruvate apparent K m values of vertebrate lactate dehydrogenases. J Comp Physiol 125:129–134

    Article  CAS  Google Scholar 

  30. Yamasaki S, Sakata-Sogawa K, Hasegawa A, Suzuki T, Kabu K, Sato E, Kurosaki T, Yamashita S, Tokunaga M, Nishida K, Hirano T (2007) Zinc is a novel intracellular second messenger. J Cell Biol 177:637–645

    Article  CAS  Google Scholar 

  31. Colemann PL, Weiner H (1973) Growth, isolation, and characterization of a yeast manganese alcohol dehydrogenase. Biochemistry 12:3466–3472

    Article  Google Scholar 

  32. Klinman JP, Welsh K (1976) The zinc content of yeast alcohol dehydrogenase. Biochem Biophys Res Commun 70:878–884

    Article  CAS  Google Scholar 

  33. Fusetti F, Schröter KH, Steiner RA, van Noort PI, Pijning T, Rozeboom HJ, Kalk KH, Egmond MR, Dijkstra BW (2002) Crystal structure of the copper-containing quercetin 2,3-dioxygenase from Aspergillus japonicas. Structure 10:259–268

    Article  CAS  Google Scholar 

  34. Mukherjee P, Roy P (2013) Copper enhanced monooxygenase activity and FT–IR spectroscopic characterisation of biotransformation products in trichloroethylene degrading bacterium: Stenotrophomonas maltophilia PM102. BioMed Research International (Article ID 723680)

  35. Smith SM, Rawat S, Telser J, Hoffman BM, Stemmler TL, Rosenzweig AC (2011) Crystal structure and characterization of particulate methane monooxygenase from Methylocystis species strain M. Biochemistry 50:10231–10240

    Article  CAS  Google Scholar 

  36. O’Halloran TV, Culotta VC (2000) Metallochaperones, an intracellular shuttle service for metal ions. J Biol Chem 275:25057–25060

    Article  Google Scholar 

  37. Beckmann JD, Frerman FE (1983) The effects of pH, ionic strength, and chemical modifications on the reaction of electron transfer flavoprotein with an acyl coenzyme A dehydrogenase. J Biol Chem 258:7563–7569

    CAS  Google Scholar 

  38. Pawelczyk T, Easom RA, Olson MS (1992) Effect of ionic strength and pH on the activity of pyruvate dehydrogenase complex from pig kidney cortex. Arch Biochem Biophy 294:44–49

    Article  CAS  Google Scholar 

  39. Wu S, Zhang C, Xu D, Guo H (2010) Catalysis of carboxypeptidase A: promoted-water versus nucleophilic pathways. J Phys Chem B 114:9259–9267

    Article  CAS  Google Scholar 

Download references

Acknowledgments

P. Saranya is grateful to the Council of Scientific and Industrial Research (CSIR), India. The financial assistance under the STRAIT (CSC0201) programme is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sekaran G.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 391 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

P, S., G, S. Factors affecting the activation and inhibition of intracellular enzymes for degradation of 1,2 diamino benzene: kinetics and thermodynamic studies. Bioprocess Biosyst Eng 38, 2221–2230 (2015). https://doi.org/10.1007/s00449-015-1460-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1460-1

Keywords

Navigation