Skip to main content
Log in

Immobilization of halophilic Bacillus sp. EMB9 protease on functionalized silica nanoparticles and application in whey protein hydrolysis

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The present work targets the fabrication of an active, stable, reusable enzyme preparation using functionalized silica nanoparticles as an effective enzyme support for crude halophilic Bacillus sp. EMB9 protease. The immobilization efficiency under optimized conditions was 60 %. Characterization of the immobilized preparation revealed marked increase in pH and thermal stability. It retained 80 % of its original activity at 70 °C while t 1/2 at 50 °C showed a five-fold enhancement over that for the free protease. Kinetic constants K m and V max were indicative of a higher reaction velocity along with decreased affinity for substrate. The preparation could be efficiently reused up to 6 times and successfully hydrolysed whey proteins with high degree of hydrolysis. Immobilization of a crude halophilic protease on a nanobased scaffold makes the process cost effective and simple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Verma ML, Barrow CJ, Puri M (2013) Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production. Appl Microbiol Biotechnol 97:23–39

    Article  CAS  Google Scholar 

  2. Tran DN, Balkus KJ Jr (2011) Perspective of recent progress in immobilization of enzymes. ACS Catal 1:956–968

    Article  CAS  Google Scholar 

  3. Sheldon RA, van Pelt S (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42:6223–6235

    Article  CAS  Google Scholar 

  4. Cipolatti EP, Silva MJA, Klein M, Feddern V, Feltes MMC, Oliveira JV, Ninow JL, de Oliveira D (2014) Current status and trends in enzymatic nanoimmobilization. J Mol Catal B Enzym 99:56–67

    Article  CAS  Google Scholar 

  5. Liese A, Hilterhaus L (2013) Evaluation of immobilized enzymes for industrial applications. Chem Soc Rev 42:6236–6249

    Article  CAS  Google Scholar 

  6. Ansari SA, Husain Q (2012) Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol Adv 30:512–523

    Article  CAS  Google Scholar 

  7. Hartmann M, Kostrov X (2013) Immobilization of enzymes on porous silicas–benefits and challenges. Chem Soc Rev 42:6277–6289

    Article  CAS  Google Scholar 

  8. Gole A, Dash C, Soman C, Sainkar SR, Rao M, Sastry M (2001) On the preparation, characterization, and enzymatic activity of fungal protease-gold colloid bioconjugates. Bioconjugate Chem 12:684–690

    Article  CAS  Google Scholar 

  9. Zanphorlin LM, Facchini FDA, Vasconcelos F, Bonugli-Santos RC, Rodrigues A, Sette LD, Gomes E, Bonilla-Rodriguez GO (2010) Production, partial characterization, and immobilization in alginate beads of an alkaline protease from a new thermophilic fungus Myceliophthora sp. J Microbiol 48:331–336

    Article  CAS  Google Scholar 

  10. Zhao H, Song Z, Olubajo O (2010) High transesterification activities of immobilized proteases in new ether-functionalized ionic liquids. Biotechnol Lett 32:1109–1116

    Article  CAS  Google Scholar 

  11. Singh AN, Singh S, Suthar N, Dubey VK (2011) Glutaraldehyde-activated chitosan matrix for immobilization of a novel cysteine protease, Procerain B. J Agric Food Chem 59:6256–6262

    Article  CAS  Google Scholar 

  12. Hayashi T, Hyon SH, Cha WI, Ikada Y (1993) Immobilization of thiol proteases onto porous poly (vinyl alcohol) beads. Polym J 25:489–497

    Article  CAS  Google Scholar 

  13. Davidenko TI (1999) Immobilization of alkaline protease on polysaccharides of microbial origin. Pharm Chem J 33:487–489

    Article  CAS  Google Scholar 

  14. Sadjadi MS, Farhadyar N, Zare K (2009) Synthesis of bi-metallic Au–Ag nanoparticles loaded on functionalized MCM-41 for immobilization of alkaline protease and study of its biocatalytic activity. Superlattices Microstruct 46:563–571

    Article  CAS  Google Scholar 

  15. Jin X, Li JF, Huang PY, Dong XY, Guo LL, Yang L, Cao YC, Wei F, Zhao Y, Chen H (2010) Immobilized protease on the magnetic nanoparticles used for the hydrolysis of rapeseed meals. J Magn Magn Mater 322:2031–2037

    Article  CAS  Google Scholar 

  16. Soleimani M, Khani A, Najafzadeh K (2012) α-Amylase immobilization on the silica nanoparticles for cleaning performance towards starch soils in laundry detergents. J Mol Catal B Enzym 74:1–5

    Article  CAS  Google Scholar 

  17. Ganesh KA, Perinbam K, Kamatchi P, Nagesh N, Sekaran G (2010) In situ immobilization of acid protease on mesoporous activated carbon packed column for the production of protein hydrolysates. Bioresour Technol 101:1377–1379

    Article  Google Scholar 

  18. Prasertkittikul S, Chisti Y, Hansupalak N (2013) Deproteinization of natural rubber using protease immobilized on epichlorohydrin cross-linked chitosan beads. Ind Eng Chem Res 52:11723–11731

    Article  CAS  Google Scholar 

  19. Li J, Cai J, Zhong L, Du Y (2012) Immobilization of a protease on modified chitosan beads for the depolymerization of chitosan. Carbohydr Polym 87:2697–2705

    Article  CAS  Google Scholar 

  20. Tahir MN, Cho E, Mischnick P, Lee JY, Yu JH, Jung S (2014) Pentynyl dextran as a support matrix for immobilization of serine protease subtilisin Carlsberg and its use for transesterification of N-acetyl-l-phenylalanine ethyl ester in organic media. Bioprocess Biosyst Eng 37:687–695

    Article  CAS  Google Scholar 

  21. Xin BJ, Si SF, Xing GW (2010) Protease immobilization on γ-Fe2O3/Fe3O4 magnetic nanoparticles for the synthesis of oligopeptides in organic solvents. Chem Asian J 5:1389–1394

    CAS  Google Scholar 

  22. Karan R, Khare SK (2011) Stability of haloalkaliphilic Geomicrobium sp. protease modulated by salt. Biochemistry (Mosc) 76:686–693

    Article  CAS  Google Scholar 

  23. Sinha R, Khare SK (2014) Protective role of salt in catalysis and maintaining structure of halophilic proteins against denaturation. Front Microbiol 5:165. doi:10.3389/fmicb.2014.00165

    Article  Google Scholar 

  24. Sinha R, Srivastava AK, Khare SK (2013) Efficient proteolysis and application of an alkaline protease from halophilic Bacillus sp. EMB9. Prep Biochem. doi:10.1080/10826068.2013.844711

    Google Scholar 

  25. Shimogaki H, Takeuchi K, Nishino T, Ohdera M, Kudo T, Ohba K, Iwama M, Irie M (1991) Purification and properties of a novel surface active agent and alkaline-resistant protease from Bacillus sp. Agric Biol Chem 55:2251–2258

    Article  CAS  Google Scholar 

  26. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  27. Singh RK, Zhang YW, Jeya M, Lee JK (2011) Covalent immobilization of β-1, 4-glucosidase from Agaricus arvensis onto functionalized silicon oxide nanoparticles. Appl Microbiol Biotechnol 89:337–344

    Article  CAS  Google Scholar 

  28. Morais HA, Silvestre MP, Silva VD, Silva MR, Simões e Silva AC, Silveira JN (2013) Correlation between the degree of hydrolysis and the peptide profile of whey protein concentrate hydrolysates: effect of the enzyme type and reaction time. Am J Food Technol 8:1–16

    Article  CAS  Google Scholar 

  29. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  30. Kranz B, Bürck J, Franzreb M, Köster R, Ulrich AS (2007) Circular dichroism analysis of penicillin G acylase covalently immobilized on silica nanoparticles. J Colloid Interface Sci 316:413–419

    Article  CAS  Google Scholar 

  31. Zhu L, Hu RP, Wang HY, Wang YJ, Zhang YQ (2011) Bioconjugation of neutral protease on silk fibroin nanoparticles and application in the controllable hydrolysis of sericin. J Agric Food Chem 59:10298–10302

    Article  CAS  Google Scholar 

  32. He C, Liu J, Xie L, Zhang Q, Li C, Gui D, Zhang G, Wu C (2009) Activity and thermal stability improvements of glucose oxidase upon adsorption on core − shell PMMA − BSA nanoparticles. Langmuir 25:13456–13460

    Article  CAS  Google Scholar 

  33. Madadlou A, Iacopino D, Sheehan D, Emam-Djomeh Z, Mousavi ME (2010) Enhanced thermal and ultrasonic stability of a fungal protease encapsulated within biomimetically generated silicate nanospheres. BBA-Gen Subjects 1800:459–465

    Article  CAS  Google Scholar 

  34. Wang F, Guo C, Yang LR, Liu CZ (2010) Magnetic mesoporous silica nanoparticles: fabrication and their laccase immobilization performance. Bioresour Technol 101:8931–8935

    Article  CAS  Google Scholar 

  35. Tu M, Zhang X, Kurabi A, Gilkes N, Mabee W, Saddler J (2006) Immobilization of β-glucosidase on Eupergit C for lignocellulose hydrolysis. Biotechnol Lett 28:151–156

    Article  CAS  Google Scholar 

  36. Severin S, Xia WS (2006) Enzymatic hydrolysis of whey proteins by two different proteases and their effect on the functional properties of resulting protein hydrolysates. J Food Biochem 30:77–97

    Article  CAS  Google Scholar 

  37. Lamas EM, Barros RM, Balcão VM, Malcata FX (2001) Hydrolysis of whey proteins by proteases extracted from Cynara cardunculus and immobilized onto highly activated supports. Enzyme Microb Technol 28:642–652

    Article  CAS  Google Scholar 

  38. Silvestre MPC, Morais HA, Silva VDM, Silva MR (2014) Whey as source of peptides with high antioxidant activity: use of a pancreatin and an Aspergillus sojae protease. Publicatio UEPG: Ciências Biológicas e da Saúde 19:143–147

    Google Scholar 

  39. Creusot N, Gruppen H (2007) Hydrolysis of whey protein isolate with Bacillus licheniformis protease: fractionation and identification of aggregating peptides. J Agric Food Chem 55:9241–9250

    Article  CAS  Google Scholar 

  40. Silvestre MPC, del de Oliveira AW, de Oliveira Jr LC, Silva VDM, Morais HA, de Souza MWS, Silva MR (2011) Use of subtilisin and pancretin for hydrolyzing whey protein concentrate. Am J Food Technol 6:647–660

    Article  CAS  Google Scholar 

  41. Conesa C, FitzGerald RJ (2013) Total solids content and degree of hydrolysis influence proteolytic inactivation kinetics following whey protein hydrolysate manufacture. J Agric Food Chem 61:10135–10144

    Article  CAS  Google Scholar 

  42. Pintado ME, Pintado AE, Malcata FX (1999) Controlled whey protein hydrolysis using two alternative proteases. J Food Eng 42:1–13

    Article  Google Scholar 

  43. Morais HA, Silvestre MPC, Silva MR, Silva VDM, Batista MA, e Silva ACS, Silveira JN (2013) Enzymatic hydrolysis of whey protein concentrate: effect of enzyme type and enzyme: substrate ratio on peptide profile. J Food Sci Technol. doi:10.1007/s13197-013-1005-z

    Google Scholar 

Download references

Acknowledgments

The financial support provided by the Department of Biotechnology (Government of India) is gratefully acknowledged. Author Rajeshwari Sinha is grateful to the Council of Scientific and Industrial Research (CSIR), Government of India, for providing the Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Khare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, R., Khare, S.K. Immobilization of halophilic Bacillus sp. EMB9 protease on functionalized silica nanoparticles and application in whey protein hydrolysis. Bioprocess Biosyst Eng 38, 739–748 (2015). https://doi.org/10.1007/s00449-014-1314-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1314-2

Keywords

Navigation