Skip to main content
Log in

Covalent immobilization of β-1,4-glucosidase from Agaricus arvensis onto functionalized silicon oxide nanoparticles

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

An efficient β-1,4-glucosidase (BGL) secreting strain, Agaricus arvensis, was isolated and identified. The relative molecular weight of the purified A. arvensis BGL was 98 kDa, as determined by sodium dodecylsulfate polyacrylamide gel electrophoresis, or 780 kDa by size exclusion chromatography, indicating that the enzyme is an octamer. Using a crude enzyme preparation, A. arvensis BGL was covalently immobilized onto functionalized silicon oxide nanoparticles with an immobilization efficiency of 158%. The apparent V max (k cat) values of free and immobilized BGL under standard assay conditions were 3,028 U mg protein−1 (4,945 s−1) and 3,347 U mg protein−1 (5,466 s−1), respectively. The immobilized BGL showed a higher optimum temperature and improved thermostability as compared to the free enzyme. The half-life at 65 °C showed a 288-fold improvement over the free BGL. After 25 cycles, the immobilized enzyme still retained 95% of the original activity, thus demonstrating its prospects for commercial applications. High specific activity, high immobilization efficiency, improved stability, and reusability of A. arvensis BGL make this enzyme of potential interest in a number of industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Cecchini DA, Serra I, Ubiali D, Terreni M, Albertini AM (2007) New active site oriented glyoxyl-agarose derivatives of Escherichia coli penicillin G acylase. BMC Biotechnol 7:54

    Article  Google Scholar 

  • Chauve M, Mathis H, Huc D, Casanave D, Monot F, Ferreira NL (2010) Comparative kinetic analysis of two fungal beta-glucosidases. Biotechnol Biofuels 3(1):3

    Article  Google Scholar 

  • Elyas KK, Mathew A, Sukumaran RK, Ali PP, Sapna K, Kumar SR, Mol KR (2010) Production optimization and properties of beta glucosidases from a marine fungus Aspergillus-SA 58. N Biotechnol. doi:10.1016/j.nbt.2010.02.007

    Google Scholar 

  • Fessner WD, Anthonsen T (2009) Modern biocatalysis: stereoselective and environmentally friendly reactions. Wiley-VCH, Weinheim

  • Guisán JM, Penzol G, Armisen P, Bastida A, Blanco RM, Fernandez-Lafuente R, García-Junceda E (1996) Immobilization of enzymes acting on macromolecular substrates. Immobilization of enzymes and cells. Humana, Totowa, NJ, pp 261–275

  • Hanefeld U, Gardossi L, Magner E (2009) Understanding enzyme immobilisation. Chem Soc Rev 38(2):453–468

    Article  CAS  Google Scholar 

  • Itoh T, Ishii R, Matsuura S, Mizuguchi J, Hamakawa S, Hanaoka TA, Tsunoda T, Mizukami F (2010) Enhancement in thermal stability and resistance to denaturants of lipase encapsulated in mesoporous silica with alkyltrimethylammonium (CTAB). Colloids Surf B Biointerfaces 75(2):478–482

    Article  CAS  Google Scholar 

  • Joo AR, Jeya M, Lee KM, Sim WI, Kim JS, Kim IW, Kim YS, Oh DK, Gunasekaran P, Lee JK (2009) Purification and characterization of a beta-1,4-glucosidase from a newly isolated strain of Fomitopsis pinicola. Appl Microbiol Biotechnol 83(2):285–294

    Article  CAS  Google Scholar 

  • Kim J, Grate JW, Wang P (2006) Nanostructures for enzyme stabilization. Chem Eng Sci 61(3):1017–1026

    Article  CAS  Google Scholar 

  • Kim J, Grate JW, Wang P (2008) Nanobiocatalysis and its potential applications. Trends Biotechnol 26(11):639–646

    Article  CAS  Google Scholar 

  • Lee SM, Jin LH, Kim JH, Han SO, Na HB, Hyeon T, Koo YM, Kim J, Lee JH (2010) Beta-glucosidase coating on polymer nanofibers for improved cellulosic ethanol production. Bioprocess Biosyst Eng 33(1):141–147

    Article  CAS  Google Scholar 

  • Leite RSR, Gomes E, Da Silva R (2007) Characterization and comparison of thermostability of purified beta-glucosidases from a mesophilic Aureobasidium pullulans and a thermophilic Thermoascus aurantiacus. Proc Biochem 42(7):1101–1106

    Article  CAS  Google Scholar 

  • Libertino S, Giannazzo F, Aiello V, Scandurra A, Sinatra F, Renis M, Fichera M (2008) XPS and AFM characterization of the enzyme glucose oxidase immobilized on SiO(2) surfaces. Langmuir 24(5):1965–1972

    Article  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577

    Article  CAS  Google Scholar 

  • Mateo C, Abian O, Fernandez-Lafuente R, Guisan JM (2000) Increase in conformational stability of enzymes immobilized on epoxy-activated supports by favoring additional multipoint covalent attachment. Enzyme Microb Technol 26(7):509–515

    Article  CAS  Google Scholar 

  • Polizzi KM, Bommarius AS, Broering JM, Chaparro-Riggers JF (2007) Stability of biocatalysts. Curr Opin Chem Biol 11(2):220–225

    Article  CAS  Google Scholar 

  • Rekuc A, Bryjak J, Szymanska K, Jarzebski AB (2010) Very stable silica-gel-bound laccase biocatalysts for the selective oxidation in continuous systems. Bioresour Technol 101(7):2076–2083

    Article  CAS  Google Scholar 

  • Riou C, Salmon JM, Vallier MJ, Gunata Z, Barre P (1998) Purification, characterization, and substrate specificity of a novel highly glucose-tolerant beta-glucosidase from Aspergillus oryzae. Appl Environ Microbiol 64(10):3607–3614

    CAS  Google Scholar 

  • Tan YH, Liu M, Nolting B, Go JG, Gervay-Hague J, Liu GY (2008) A nanoengineering approach for investigation and regulation of protein immobilization. ACS Nano 2(11):2374–2384

    Article  CAS  Google Scholar 

  • Tiwari MK, Moon HJ, Jeya M, Lee JK (2010) Cloning and characterization of a thermostable xylitol dehydrogenase from Rhizobium etli CFN42. Appl Microbiol Biotechnol 87(2):571–581

    Article  CAS  Google Scholar 

  • Tu M, Zhang X, Kurabi A, Gilkes N, Mabee W, Saddler J (2006) Immobilization of beta-glucosidase on Eupergit C for lignocellulose hydrolysis. Biotechnol Lett 28(3):151–156

    Article  CAS  Google Scholar 

  • Wang X, Zhou D, Sinniah K, Clarke C, Birch L, Li H, Rayment T, Abell C (2006) Electrostatic orientation of enzymes on surfaces for ligand screening probed by force spectroscopy. Langmuir 22(3):887–892

    Article  CAS  Google Scholar 

  • Wang P, Hu X, Cook S, Hwang H-M (2009) Influence of silica-derived nano-supporters on cellobiase after immobilization. Appl Biochem Biotechnol 158(1):88–96

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  • Wong LS, Khan F, Micklefield J (2009) Selective covalent protein immobilization: strategies and applications. Chem Rev 109(9):4025–4053

    Article  CAS  Google Scholar 

  • Zhang YW, Prabhu P, Lee JK (2009) Immobilization of Bacillus licheniformis l-arabinose isomerase for semi-continuous l-ribulose production. Biosci Biotechnol Biochem 73(10):2234–2239

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by a grant (code 2008A0080126) from ARPC, Republic of Korea. This work was also supported by a grant (code 20070301034024) from Biogreen 21 Program, Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marimuthu Jeya or Jung-Kul Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, R.K., Zhang, YW., Nguyen, NPT. et al. Covalent immobilization of β-1,4-glucosidase from Agaricus arvensis onto functionalized silicon oxide nanoparticles. Appl Microbiol Biotechnol 89, 337–344 (2011). https://doi.org/10.1007/s00253-010-2768-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2768-z

Keywords

Navigation