Skip to main content
Log in

Assessing multiple limiting factors of seasonal biomass production and N content in a grassland with a year-round production

  • Ecosystem ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

There is little evidence on the extent that multiple factors simultaneously limit ecosystem function of grasslands with year-round production. Here we test if multiple factors simultaneously limit (i.e., more than one factor at a time) grassland functioning in different seasons and how they interacted with N availability. In a Flooding Pampa grassland, we ran a separate factorial experiment in spring, summer, and winter with several treatments: control, mowing, shading, P addition, watering (only in summer), and warming (only in winter), each of them crossed with two nitrogen treatments: control and N addition. Grassland functioning was assessed by aboveground net primary productivity (ANPP), green and standing dead biomass, and N content at the species group level. Out of 24 potential cases (three seasons by eight response variables), 13 corresponded to just one limiting factor, 4 to multiple limiting factors, and the other 7 to no evidence of limitation. In conclusion, grassland functioning in each season was most often limited by just one factor, while multiple limiting factors were rarer. Nitrogen was the prevailing limiting factor. Our study expands our knowledge of limitations imposed by factors associated with disturbance and stress, such as mowing, shading, water availability, and warming in grasslands with year-round production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  • Alward RD, Detling JK, Milchunas DG (1999) Grassland vegetation changes and nocturnal global warming. Science 283:229–231

    Article  CAS  PubMed  Google Scholar 

  • Baldi G, Guerschman JP, Paruelo JM (2006) Characterizing fragmentation in temperate South America grasslands. Agr Ecosyst Environ 116:197

    Article  Google Scholar 

  • Blair JM (1997) Fire, N availability, and plant response in grasslands: a test of the transient maxima hypothesis. Ecology 78(8):2359–2368

    Article  Google Scholar 

  • Bloom AJ, Chapin FS, Mooney HA (1985) Resource limitation in plants-An economic analogy. Annu Rev Ecol Syst 16:363–392

    Article  Google Scholar 

  • Bobbink R, Dendubbelden K, Wilems JH (1989) Seasonal dynamics of phytomass and nutrients in chalk grassland. Oikos 55:216–224

    Article  Google Scholar 

  • Boelman NT, Stieglitz M, Rueth HM, Sommerkorn M, Griffin KL, Shaver GR, Gamon JA (2003) Response of NDVI, biomass, and ecosystem gas exchange to long-term warming and fertilization in wet sedge tundra. Oecologia 135:414–421

    Article  PubMed  Google Scholar 

  • Borer ET, Harpole WS, Adler PB, Lind EM, Orrock JL, Seabloom EW, Smith MD (2014) Finding generality in ecology: a model for globally distributed experiments. Methods Ecol Evol 5(1):65–73

    Article  Google Scholar 

  • Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59:39–45

    Article  CAS  Google Scholar 

  • Burkart SE, León RJC, Movia CP (1990) Inventario fitosociológico del pastizal de la Depresión del Salado (Prov. Bs. As.) en un área representativa de sus principales ambientes. Darwiniana 30:27–69

    Google Scholar 

  • Campana S, Yahdjian L (2020) Plant quality and primary productivity modulate plant biomass responses to the joint effects of grazing and fertilization in a mesic grassland. Appl Veg Sci 24:e12588

    Google Scholar 

  • Carlyle CN, Fraser LH, Turkington R (2014) Response of grassland biomass production to simulated climate change and clipping along an elevation gradient. Oecologia 174:1065–1073

    Article  PubMed  Google Scholar 

  • Chaneton EJ (2006) Las inundaciones en pastizales pampeanos. Impacto ecológico de las perturbaciones naturales. Ciencia Hoy 16(92):18–32

    Google Scholar 

  • Chaneton EJ, Lemcoff JH, Lavado RS (1996) Nitrogen and phosphorus cycling in grazed and ungrazed plots in a temperate subhumid grassland in Argentina. J Appl Ecol 33:291–302

    Article  Google Scholar 

  • Chapin FSI (1980) The mineral nutrition of wild plants. Annu Rev Ecol Evol Syst 11:233–260

    Article  CAS  Google Scholar 

  • Chapin FSI, Shaver GR (1985) Individualistic growth response of tundra plant species to manipulation of light, temperature, and nutrients in a field experiment. Ecology 66:564–576

    Article  Google Scholar 

  • Chapin FSI, Bloom AJ, Field CB, Waring RH (1987) Plant responses to multiple environmental factors. Bioscience 37:49–57

    Article  Google Scholar 

  • Chapin FSI, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA (1995) Responses of arctic tundra to experimental and observed changes in climate. Ecology 76:694–711

    Article  Google Scholar 

  • Chapin FS, Matson PA, Mooney HA (2002) Principles of Terrestrial Ecosystem Ecology. Springer-Verlag, New York

    Book  Google Scholar 

  • Collantes MB, Stofella SL, Ginzo HD, Kade M (1998) Productividad y composición botánica divergente de dos variantes florísticas de un pastizal natural de la Pampa Deprimida fertilizadas con N y P. Rev Fac De Agr La Plata 103:45–59

    Google Scholar 

  • de Abelleyra D, Banchero S, Verón S, Mosciaro J, Volante J (2019). Mapa Nacional de Cultivos campaña 2018/2019. Col. 1, V. 1. INTA, Argentina

  • Druille M, Oyarzabal M, Oesterheld M (2019) Radiation use efficiency of forage resources: a meta-analysis. Agron J 111:1–9

    Article  Google Scholar 

  • Dukes JS, Chiariello NR, Cleland EE, Moore LA, Shaw MR, Thayer S, Tobeck T, Mooney HA et al (2005) Responses of grassland production to single and multiple global environmental changes. PLoS Biol 3:e319

    Article  PubMed  PubMed Central  Google Scholar 

  • Fay PA, Prober SM, Harpole WS, Knops JMH, Bakker JD, Borer ET, Lind EM, MacDougall AS et al (2015) Grassland productivity limited by multiple nutrients. Nat Plants. https://doi.org/10.1038/nplants.2015.80

    Article  PubMed  Google Scholar 

  • Ferraro DO, Oesterheld M (2002) Effect of defoliation on grass growth. A quantitative review. Oikos 98:125–133

    Article  Google Scholar 

  • Gao W, Yan D (2019) Warming suppresses microbial biomass but enhances N recycling. Soil Biol Biochem 131:111–118

    Article  CAS  Google Scholar 

  • García F, Micucci F, Rubio G, Ruffo M, Daverede I (2002) Fertilización de forrajes en la región pampeana, 1st edn. INPOFOS Cono Sur, Buenos Aires, Argentina

    Google Scholar 

  • Ginzo HD, Collantes M, Caso OH (1982) Fertilization of a native grassland in the “Depresión del Río Salado”, Province of Buenos Aires: herbage dry matter accumulation and botanical composition. J Range Manag 35:35–39

    Article  Google Scholar 

  • Graff P, Gundel PE, Salvat A, Cristos D, Chaneton EJ (2020) Protection offered by leaf fungal endophytes to an invasive species against native herbivores depends on soil nutrients. J Ecol 108:1592–1604

    Article  CAS  Google Scholar 

  • Harpole WS, Ngai JT, Cleland EE, Seabloom EW, Borer ET, Bracken MES, Elser JJ, Gruner DS et al (2011) Nutrient co-limitation of primary producer communities. Ecol Lett 14(9):852–862

    Article  PubMed  Google Scholar 

  • He M, Ju W, Zhou Y, Chen J, He H, Wang S, Wang H, Guan D et al (2013) Development of a two-leaf light use efficiency model for improving the calculation of terrestrial gross primary productivity. Agric for Meteorol 173:28–39

    Article  Google Scholar 

  • Hill MJ, Donald GE, Hyder MW, Smith RCG (2004) Estimation of pasture growth rate in the south west of Western Australia from AVHRR NDVI and climate data. Remote Sens Environ 93:528–545

    Article  Google Scholar 

  • Hooper DU, Johnson L (1999) Nitrogen limitation in dryland ecosystems: responses to geographical and temporal variation in precipitation. Biogeochemistry 46(1–3):247

    Article  CAS  Google Scholar 

  • Huang K, Wang S, Zhou L, Wang H, Zhang J, Yan J, Zhao L, Wang Y et al (2014) Impacts of diffuse radiation on light use efficiency across terrestrial ecosystems based on eddy covariance observation in China. PLoS One 9(11):e110988

    Article  PubMed  PubMed Central  Google Scholar 

  • James JJ, Tiller RL, Richards JH (2005) Multiple resources limit plant growth and function in a saline–alkaline desert community. J Ecol 93:113–126

    Article  CAS  Google Scholar 

  • Johnson CM, Ulrich A (1959) Analytical methods for use in plant analysis. Calif Agric Exp Stn Bull 766:25–78

    Google Scholar 

  • Knapp AK, Smith MD (2001) Variation among biomes in temporal dynamics of aboveground primary production. Science 291:481–484

    Article  CAS  PubMed  Google Scholar 

  • La Pierre KJ, Smith MD (2016) Soil nutrient additions increase invertebrate herbivore abundances, but not herbivory, across three grassland systems. Oecologia 180:485–497

    Article  PubMed  Google Scholar 

  • Lauenroth WK, Dodd JL, Sims PL (1978) The effects of water- and nitrogen-induced stresses on plant community structure in a semiarid grassland. Oecologia 36:211–222

    Article  CAS  PubMed  Google Scholar 

  • Lavado R, Taboada M (1987) Soil salinization as an effect of grazing in a native grassland soil in the Flooding Pampa of Argentina. Soil Use Manag 3:143–148

    Article  Google Scholar 

  • Liebig J (1842) Animal chemistry, or organic chemistry in its application to physiology and pathology. Johnson Reprint Corporation, New York

    Book  Google Scholar 

  • Limpens J, Granath G, Gunnarsson U, Aerts R, Bayley S, Bragazza L, Bubier J, Buttler A et al (2011) Climatic modifiers of the response to N deposition in peat-forming Sphagnum mosses: a meta-analysis. New Phytol 191:496–507

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang C, He N, Wen X, Gao Y, Li S, Niu S, Butterbach-Bahl K et al (2016) A global synthesis of the rate and temperature sensitivity of soil nitrogen mineralization: latitudinal patterns and mechanisms. Glob Change Biol 23(1):455–464

    Article  Google Scholar 

  • López-Mársico L, Oyarzabal M, Altesor A, Paruelo JM. Grazing exclusion reduces below-ground biomass of temperate subhumid grasslands of southern South America. A meta-analysis and a database. Austral Ecol (in press)

  • Ma TS, Zuazaga G (1942) Micro-Kjeldahl determination of Nitrogen. A new indicator and an improved rapid method. Ind Eng Chem 14(3):280–282

    CAS  Google Scholar 

  • McNaughton SJ, Oesterheld M, Frank DA, Williams KJ (1989) Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats. Nature 341:142–144

    Article  CAS  PubMed  Google Scholar 

  • Monteith J (1972) Solar radiation and productivity in tropical ecosystems. J Appl Ecol 9:747–766

    Article  Google Scholar 

  • Mueller KE, Blumenthal DM, Pendall E, Carrillo Y, Dijkstra FA, Williams DG, Follett RF, Morgan JA (2016) Impacts of warming and elevated CO2 on a semi-arid grassland are non-additive, shift with precipitation, and reverse over time. Ecol Lett 19:956–966

    Article  CAS  PubMed  Google Scholar 

  • Oesterheld M, McNaughton SJ (1991) Effect of stress and time for recovery on the amount of compensatory growth after grazing. Oecologia 85:305–313

    Article  CAS  PubMed  Google Scholar 

  • Oesterheld M, Loreti J, Semmartin M, Paruelo JM (1999) Grazing, fire, and climate effects on primary productivity of grasslands and savannas. In: Walker L (ed) Ecosystems of disturbed ground. Elsevier, Amsterdam, pp 287–306

    Google Scholar 

  • Oyarzabal M, Oesterheld M (2009) Phosphorus reserves increase grass regrowth after defoliation. Oecologia 159:717–724

    Article  PubMed  Google Scholar 

  • Oyarzabal M, Clavijo J, Oakley L, Biganzoli F, Tognetti PM, Barberis I, Maturo HM, Aragon R et al (2018) Unidades de Vegetación de la Argentina. Ecol Austral 28:040–063

    Article  Google Scholar 

  • Oyarzabal M, Andrade B, Pillar PD, Paruelo JM (2020) Temperate subhumid grasslands of southern South America. In: di Paolo D (ed) Biomes of the world. Elsevier, Amsterdam

    Google Scholar 

  • Paruelo JM, Lauenroth WK, Epstein H, Burke I, Aguiar MR, Sala OE (1995) Regional climatic similarities in the temperate zones of North and South America. J Biogeog 22:2689–2699

    Article  Google Scholar 

  • Paruelo JM, Jobbágy EG, Oesterheld M, Golluscio RA, Aguiar MR (2007) The grasslands and steppes of Patagonia and the Rio de la Plata plains. The physical geography of South America. Oxford University Press, Oxford, pp 232–248

    Google Scholar 

  • Perelman S, León RJC, Oesterheld M (2001) Cross-scale vegetation patterns of Flooding Pampa grasslands. J Ecol 89:562–577

    Article  Google Scholar 

  • Perelman S, Burkart S, Oyarzabal M, Bagnato C, Batista W (2017) Climatic and land use drivers along a latitudinal gradient: species diversity in temperate grasslands on agricultural soils. J Veg Sci 28:1097–1269

    Article  Google Scholar 

  • Piñeiro G, Oesterheld M, Paruelo JM (2006) Seasonal variation in aboveground production and radiation use efficiency of temperate rangelands estimated through remote sensing. Ecosystems 9:357–373

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2017). nlme: linear and nonlinear mixed effects models. R package version 3.1–131

  • R Core Team. (2020). R: a language and environment for statistical computing. R Foundation for Statistical Computing

  • Radujković D, Verbruggen E, Seabloom EW, Bahn M, Biederman LA, Borer ET, Boughton EH, Catford JA et al (2021) Soil properties as key predictors of global grassland production: Have we overlooked micronutrients? Ecol Lett 24(12):2713–2725

    Article  PubMed  Google Scholar 

  • Rillig MC, Ryo M, Lehmann A, Aguilar-Trigueros CA, Buchert S, Wulf A, Iwasaki A, Roy J et al (2019) The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366(6467):886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson GP, Wedin D, Groffman PM, Blair J, Holland E, Nadelhoffer K, Harris DF (1999) Soil carbon and nitrogen availability: nitrogen mineralization, nitrification, and soil respiration potentials. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P (eds) Standard soil methods for long-term ecological research. Oxford University Press, Oxford, pp 258–271

    Google Scholar 

  • Rubio G, Gutierrez Boem FH, Lavado RS (2009) Responses of C3 and C4 grasses to application of nitrogen and phosphorus fertilizer at two dates in the spring. Grass Forage Sci 65:102–109

    Article  Google Scholar 

  • Rusch GM, Oesterheld M (1997) Relationship between productivity, and species and functional group diversity in grazed and non-grazed Pampas grassland. Oikos 78:519–526

    Article  Google Scholar 

  • Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J, GCTE-NEWS, (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562

    Article  CAS  PubMed  Google Scholar 

  • Sala OE, Austin AT (2000) Methods of estimating aboveground net primary production. In: Sala OE, Jackson RB, Mooney HA, Howarth RH (eds) Methods in ecosystem science. Springer, New York, pp 31–43

    Chapter  Google Scholar 

  • Sala OE, Deregibus VA, Schlichter T, Alippe H (1981) Productivity dynamics of a native temperate grassland in Argentina. J Range Manag 34:48–51

    Article  Google Scholar 

  • Seastedt TR, Knapp AK (1993) Consequences of nonequilibrium resource availability across multiple time scales: the transient maxima hypothesis. Am Nat 141:621–633

    Article  CAS  PubMed  Google Scholar 

  • Semmartin M, Oesterheld M (1996) Effect of grazing pattern on primary productivity. Oikos 75:431–436

    Article  Google Scholar 

  • Semmartin M, Oesterheld M (2001) Effects of grazing pattern and nitrogen availability on primary productivity. Oecologia 126:225–230

    Article  PubMed  Google Scholar 

  • Semmartin M, Oyarzabal M, Loreti JM, Oesterheld M (2007) Controls of primary productivity and nutrient cycling in a temperate grassland with year-round production. Austral Ecol 32(4):416–435

    Article  Google Scholar 

  • Soriano A, León RJC, Sala OE, Lavado RS, Deregibus VA, Cauhépé MA, Scaglia OA et al (1992) Río de la Plata grasslands. In: Coupland RT (ed) Ecosystems of the world 8A. Natural grasslands. Introduction and western hemisphere, 1st edn. Elsevier, New York, pp 367–407

    Google Scholar 

  • van der Ploeg RR, Bohm W, Kirkham MB (1999) On the origin of the theory of mineral nutrition of plants and the law of the minimum. Soil Sci Soc Am J 63:1055–1062

    Article  Google Scholar 

  • Van Sundert K, Arfin Khan MAS, Bharath S, Buckley YM, Caldeira MC, Donohue I, Dubbert M, Ebeling A et al (2021) Fertilized graminoids intensify negative drought effects on grassland productivity. Glob Change Biol 27(11):2441–2457

    Article  Google Scholar 

  • Wei HW, Lü XT, Lü FM, Han XG (2014) Effects of nitrogen addition and fire on plant nitrogen use in a temperate steppe. PLoS One 9:e90057

    Article  PubMed  PubMed Central  Google Scholar 

  • White S, Bork E, Cahill J (2014) Direct and indirect drivers of plant diversity responses to climate and clip ping across northern temperate grassland. Ecology 95:3093–3103

    Article  Google Scholar 

  • Zhao Y, Yang B, Li M, Xiao R, Rao K, Wang J, Zhang T, Guo J (2019) Community composition, structure and productivity in response to nitrogen and phosphorus additions in a temperate meadow. Sci Total Environ 654:863–871

    Article  CAS  PubMed  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Statistics for biology and health. Springer, New York, p 574

    Google Scholar 

Download references

Acknowledgements

We thank the Bordeu family for allowing us to work on their ranch, Estancia Las Chilcas. We especially appreciate the help during field trips of many IFEVA members, particularly Walter De Nicoló and Juan Carlos Villardi. Pamela Graff and three anonymous reviewers helped to significantly improve the manuscript. The Servicio Meteorológico Nacional provided climatic data.

Funding

This study was funded by CONICET, ANPCyT and Universidad de Buenos Aires.

Author information

Authors and Affiliations

Authors

Contributions

MOe originally formulated the idea. MOy and MOe conceived and designed the experiments. MOy performed the experiments and conducted fieldwork. MOy and MOe analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Mariano Oyarzabal.

Ethics declarations

Conflict of interest

Not applicable.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Communicated by Susanne Schwinning.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 87 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oyarzabal, M., Oesterheld, M. Assessing multiple limiting factors of seasonal biomass production and N content in a grassland with a year-round production. Oecologia 201, 841–852 (2023). https://doi.org/10.1007/s00442-023-05340-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-023-05340-x

Keywords

Navigation