Skip to main content
Log in

Heterogeneous responses to ozone and nitrogen alter the species composition of Mediterranean annual pastures

  • Physiological ecology - original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Air pollution represents a threat to biodiversity throughout the world and particularly in the Mediterranean area, where high tropospheric ozone (O3) concentrations and atmospheric nitrogen (N) deposition are frequently recorded. Mediterranean annual pastures are among the most important ecosystems in southern Europe due to their high biodiversity and extension. Aiming to study the responses of these communities to the main atmospheric pollutants in the Mediterranean region, an experimental study was performed in an open-top chamber (OTC) facility. A mixture of six species representative of annual pastures was grown under field conditions inside the OTC. Plants were exposed for 39 days to four O3 treatments and three doses of N. The species responded heterogeneously to both factors. Legumes did not react to N but were very sensitive to O3: Trifolium species responded negatively, while Ornithopus responded positively, taking advantage of the greater sensitivity of clovers to O3. The grasses and the herb were more tolerant of O3 and grasses were the most responsive to N. Significant interactions between factors indicated a loss of effectiveness of N in O3-polluted atmospheres and an ability of O3 to counterbalance the damage induced by N input, but both effects were dependent on O3 and N levels. The inclusion of plant competition in the experimental design was necessary to reveal results that would otherwise be missed, such as the positive growth responses under elevated O3 levels. Surprisingly, competition within the legume family played the most important role in the overall response of the annual community to O3. Both tropospheric O3 and N deposition should be considered important drivers of the structure and biodiversity of Mediterranean annual pastures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alonso R, Bermejo V, Sanz J, Valls B, Elvira S, Gimeno BS (2007) Stomatal conductance of semi-natural Mediterranean grasslands: implications for the development of ozone critical levels. Environ Pollut 146(3):692–698

    Article  CAS  PubMed  Google Scholar 

  • Bassin S, Volk M, Fuhrer J (2007a) Factors affecting the ozone sensitivity of temperate European grasslands: an overview. Environ Pollut 146(3):678–691

    Article  CAS  PubMed  Google Scholar 

  • Bassin S, Volk M, Suter M, Buchmann N, Fuhrer J (2007b) Nitrogen but not ozone affects productivity and species composition of subalpine grassland after 3 yr of treatment. New Phytol 175:523–534

  • Bermejo V, Gimeno BS, Sanz J, de la Torre D, Gil JM (2003) Assessment of the ozone sensitivity of 22 native plant species from Mediterranean annual pastures based on visible injury. Atmos Environ 37(33):4667–4677

    Article  CAS  Google Scholar 

  • Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, De Vries W (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20(1):30–59

    Article  CAS  PubMed  Google Scholar 

  • Bonanomi G, Caporaso S, Allegrezza M (2009) Effects of nitrogen enrichment, plant litter removal and cutting on a species-rich Mediterranean calcareous grassland. Plant Biosyst 143(3):443–455

    Article  Google Scholar 

  • Booker F, Muntifering R, McGrath M, Burkey K, Decoteau D, Fiscus E, Manning W, Krupa S, Chappelka A, Grantz D (2009) The ozone component of global change: potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species. J Integr Plant Biol 51(4):337–351

    Article  CAS  PubMed  Google Scholar 

  • Calvete-Sogo H, Elvira S, Sanz J, Gonzalez-Fernandez I, Garcia-Gomez H, Sanchez-Martin L, Alonso R, Bermejo-Bermejo V (2014) Current ozone levels threaten gross primary production and yield of Mediterranean annual pastures and nitrogen modulates the response. Atmos Environ 95:197–206

    Article  CAS  Google Scholar 

  • Carmona CP, Mason NWH, Azcarate FM, Peco B (2015) Inter-annual fluctuations in rainfall shift the functional structure of Mediterranean grasslands across gradients of productivity and disturbance. J Veg Sci 26(3):538–551

    Article  Google Scholar 

  • Cleland EE, Chiariello NR, Loarie SR, Mooney HA, Field CB (2006) Diverse responses of phenology to global changes in a grassland ecosystem. Proc Natl Acad Sci USA 103(37):13740–13744

  • CLRTAP (2014) Mapping critical levels for vegetation (Chap. III). In: Manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks and trends. UNECE Convention on Long-range Transboundary Air Pollution. http://www.icpmapping.org, accessed on 1 Jan 2016

  • Cuttelod A, García N, Abdul-Malak D, Temple H, Katariya V (2008) The Mediterranean: a biodiversity hotspot under threat. In: Vié J-C, Hilton-Taylor C, Stuart SN (eds) The 2008 review of The IUCN Red List of Threatened Species. IUCN, Gland

  • Davison AW, Barnes JD (1998) Effects of ozone on wild plants. New Phytol 139(1):135–151

    Article  CAS  Google Scholar 

  • Dentener F, Stevenson D, Ellingsen K, van Noije T, Schultz M, Amann M, Atherton C, Bell N, Bergmann D, Bey I, Bouwman L, Butler T, Cofala J, Collins B, Drevet J, Doherty R, Eickhout B, Eskes H, Fiore A, Gauss M, Hauglustaine D, Horowitz L, Isaksen ISA, Josse B, Lawrence M, Krol M, Lamarque JF, Montanaro V, Muller JF, Peuch VH, Pitari G, Pyle J, Rast S, Rodriguez J, Sanderson M, Savage NH, Shindell D, Strahan S, Szopa S, Sudo K, Van Dingenen R, Wild O, Zeng G (2006) The global atmospheric environment for the next generation. Environ Sci Technol 40(11):3586–3594

    Article  CAS  PubMed  Google Scholar 

  • Dias T, Neto D, Martins-Loucao MA, Sheppard L, Cruz C (2011) Patterns of nitrate reductase activity vary according to the plant functional group in a Mediterranean maquis. Plant Soil 347(1–2):363–376

    Article  CAS  Google Scholar 

  • Diaz S, Lavorel S, McIntyre S, Falczuk V, Casanoves F, Milchunas DG, Skarpe C, Rusch G, Sternberg M, Noy-Meir I, Landsberg J, Zhang W, Clark H, Campbell BD (2007) Plant trait responses to grazing—a global synthesis. Glob Change Biol 13(2):313–341

    Article  Google Scholar 

  • Dupre C, Stevens CJ, Ranke T, Bleeker A, Peppler-Lisbach C, Gowing DJG, Dise NB, Dorland E, Bobbink R, Diekmann M (2010) Changes in species richness and composition in European acidic grasslands over the past 70 years: the contribution of cumulative atmospheric nitrogen deposition. Glob Change Biol 16(1):344–357

    Article  Google Scholar 

  • Fernandez-Fernandez MI, Gallego MC, Garcia JA, Acero FJ (2011) A study of surface ozone variability over the Iberian Peninsula during the last fifty years. Atmos Environ 45(11):1946–1959

    Article  CAS  Google Scholar 

  • Franzaring J, Tonneijck AEG, Kooijman AWN, Dueck TA (2000) Growth responses to ozone in plant species from wetlands. Environ Exp Bot 44(1):39–48

    Article  CAS  PubMed  Google Scholar 

  • Fuhrer J (2009) Ozone risk for crops and pastures in present and future climates. Naturwissenschaften 96(2):173–194

    Article  CAS  PubMed  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320(5878):889–892

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Gomez H, Garrido JL, Vivanco MG, Lassaletta L, Rabago I, Avila A, Tsyro S, Sanchez G, Gonzalez-Ortiz A, Gonzalez-Fernandez I, Alonso R (2014) Nitrogen deposition in Spain: modeled patterns and threatened habitats within the Natura 2000 network. Sci Total Environ 485:450–460

    Article  PubMed  Google Scholar 

  • Gimeno BS, Bermejo V, Sanz J, de la Torre D, Elvira S (2004a) Growth response to ozone of annual species from Mediterranean pastures. Environ Pollut 132(2):297–306

    Article  CAS  PubMed  Google Scholar 

  • Gimeno BS, Bermejo V, Sanz J, De la Torre D, Gil JM (2004b) Assessment of the effects of ozone exposure and plant competition on the reproductive ability of three therophytic clover species from Iberian pastures. Atmos Environ 38(15):2295–2303

    Article  CAS  Google Scholar 

  • Gonzalez-Fernandez I, Bass D, Muntiffering R, Mills G, Barnes J (2008) Impacts of ozone pollution on productivity and forage quality of grass/clover swards. Atmos Environ 42:8755–8769

    Article  CAS  Google Scholar 

  • Gonzalez-Fernandez I, Kaminska A, Dodmani M, Goumenaki E, Quarrie S, Barnes JD (2010) Establishing ozone flux–response relationships for winter wheat: analysis of uncertainties based on data for UK and Polish genotypes. Atmos Environ 44(5):621–630

  • Gross N, Suding KN, Lavorel S (2007) Leaf dry matter content and lateral spread predict response to land use change for six subalpine grassland species. J Veg Sci 18:289–300

    Article  Google Scholar 

  • Hayes F, Jones MLM, Mills G, Ashmore M (2007) Meta-analysis of the relative sensitivity of semi-natural vegetation species to ozone. Environ Pollut 146(3):754–762

    Article  CAS  PubMed  Google Scholar 

  • Hayes F, Mills G, Ashmore M (2009) Effects of ozone on inter- and intra-species competition and photosynthesis in mesocosms of Lolium perenne and Trifolium repens. Environ Pollut 157(1):208–214

  • Hooper DU, Adair EC, Cardinale BJ, Byrnes JEK, Hungate BA, Matulich KL, Gonzalez A, Duffy JE, Gamfeldt L, O’Connor MI (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486(7401):U105–U129

    Google Scholar 

  • Krupa A, Muntifering R, Chappelka A (2004) Effects of ozone on plant nutritive quality characteristics for ruminant animals. Botanica 54:129–140

    Google Scholar 

  • Ledgard SF, Steele KW (1992) Biological nitrogen-fixation in mixed legume grass pastures. Plant Soil 141(1–2):137–153

    Article  CAS  Google Scholar 

  • Leisner CP, Ainsworth EA (2012) Quantifying the effects of ozone on plant reproductive growth and development. Glob Change Biol 18(2):606–616

    Article  Google Scholar 

  • Lloret F, Penuelas J, Estiarte M (2004) Experimental evidence of reduced diversity of seedlings due to climate modification in a Mediterranean-type community. Glob Change Biol 10(2):248–258

    Article  Google Scholar 

  • Mills G, Hayes F, Wilkinson S, Davies WJ (2009) Chronic exposure to increasing background ozone impairs stomatal functioning in grassland species. Glob Change Biol 15(6):1522–1533

    Article  Google Scholar 

  • Monteiro A, Strunk A, Carvalho A, Tchepel O, Miranda AI, Borrego C, Saavedra S, Rodriguez A, Souto J, Casares J, Friese E, Elbern H (2012) Investigating a high ozone episode in a rural mountain site. Environ Pollut 162:176–189

    Article  CAS  PubMed  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Notario A, Diaz-de-Mera Y, Aranda A, Antonio Adame J, Parra A, Romero E, Parra J, Munoz F (2012) Surface ozone comparison conducted in two rural areas in central-southern Spain. Environ Sci Pollut Res 19(1):186–200

    Article  CAS  Google Scholar 

  • Peco B, Espigares T, Levassor C (1998) Trends and fluctuations in species abundance and richness in Mediterranean annual pastures. Appl Veg Sci 1(1):21–28

    Article  Google Scholar 

  • Peco B, Laffan SW, Moles AT (2014) Global patterns in post-dispersal seed removal by invertebrates and vertebrates. PLoS ONE 9(3):e91256. doi:10.1371/journal.pone.0091256

  • Pereira HM, Domingos T, Vicente L, Proença V (2009) Ecossistemas e Bem-Estar Humano. Avaliação para Portugal do Millennium Ecosystem Assessment. http://ecossistemas.org/pt/relatorios.htm

  • Pineda FD, Montalvo J (1995) Biological diversity in dehesa systems. In: Gilmour D (ed) Biological diversity outside protected areas. Overview of traditional agroecosystems. IUCN Forest Conservation Programme, Gland, pp 107–122

  • Royal Society (2008) Ground-level ozone in the 21st century: future trends, impacts and policy implications. Science Policy Report 15/08. Royal Society, London

  • Sanz J, Muntifering RB, Bermejo V, Gimeno BS, Elvira S (2005) Ozone and increased nitrogen supply effects on the yield and nutritive quality of Trifolium subterraneum. Atmos Environ 39(32):5899–5907

  • Sanz J, Bermejo V, Gimeno BS, Elvira S, Alonso R (2007) Ozone sensitivity of the Mediterranean terophyte Trifolium striatum is modulated by soil nitrogen content. Atmos Environ 41(39):8952–8962

  • Sanz J, Bermejo V, Muntifering R, Gonzalez-Fernandez I, Gimeno BS, Elvira S, Alonso R (2011) Plant phenology, growth and nutritive quality of Briza maxima: responses induced by enhanced ozone atmospheric levels and nitrogen enrichment. Environ Pollut 159(2):423–430

  • Sanz J, Gonzalez-Fernandez I, Calvete-Sogo H, Lin JS, Alonso R, Muntifering R, Bermejo V (2014) Ozone and nitrogen effects on yield and nutritive quality of the annual legume Trifolium cherleri. Atmos Environ 94:765–772

  • Sanz J, Calvete-Sogo H, González-Fernández I, Lin J, García-Gómez H, Muntifering R, Alonso R, Bermejo-Bermejo V (2015) Foliar senescence is the most sensitive response to ozone in Bromus hordeaceus and is modulated by nitrogen input. Grass Forage Sci 70:71–84. doi:10.1111/gfs.12090

  • Stevens CJ, Dise NB, Mountford JO, Gowing DJ (2004) Impact of nitrogen deposition on the species richness of grasslands. Science 303(5665):1876–1879

    Article  CAS  PubMed  Google Scholar 

  • Sutton MA, Billen G, Bleeker A, Erisman JW, Grennfelt P, van Grinsven H (2011) The European Nitrogen Assessment. Cambridge University Press, Cambridge. http://go.nature.com/5n9lsq

  • Thwaites RH, Ashmore MR, Morton AJ, Pakeman RJ (2006) The effects of tropospheric ozone on the species dynamics of calcareous grassland. Environ Pollut 144(2):500–509

    Article  CAS  PubMed  Google Scholar 

  • Tilman D (1993) Species richness of experimental productivity gradients—how important is colonization limitation. Ecology 74(8):2179–2191

  • Vallano DM, Selmants PC, Zavaleta ES (2012) Simulated nitrogen deposition enhances the performance of an exotic grass relative to native serpentine grassland competitors. Plant Ecol 213(6):1015–1026

    Article  Google Scholar 

  • Vazquez-de-Aldana BR, Garcia-Ciudad A, Garcia-Criado B (2008) Interannual variations of above-ground biomass and nutritional quality of Mediterranean grasslands in Western Spain over a 20-year period. Aust J Agric Res 59(8):769–779

    Article  Google Scholar 

  • Volk M, Obrist D, Novak K, Giger R, Bassin S, Fuhrer J (2011) Subalpine grassland carbon dioxide fluxes indicate substantial carbon losses under increased nitrogen deposition, but not at elevated ozone concentration. Glob Change Biol 17(1):366–376

    Article  Google Scholar 

  • Wedlich KV, Rintoul N, Peacock S, Cape JN, Coyle M, Toet S, Barnes J, Ashmore M (2012) Effects of ozone on species composition in an upland grassland. Oecologia 168(4):1137–1146

    Article  PubMed  Google Scholar 

  • Wyness K, Mills G, Jones L, Barnes JD, Jones DL (2011) Enhanced nitrogen deposition exacerbates the negative effect of increasing background ozone in Dactylis glomerata, but not Ranunculus acris. Environ Pollut 159(10):2493–2499

  • Zimov SA, Chuprynin VI, Oreshko AP, Chapin FS, Reynolds JF, Chapin MC (1995) Steppe–tundra transition: a herbivore-driven biome shift at the end of the Pleistocene. Am Nat 146(5):765–794

Download references

Acknowledgments

This research was funded by NEREA (AGL2012-37815-C05), AGRISOST (S2009AGR-1630, Spain), AGRISOST-CM (P2013/ABI-2717), and ECLAIRE (FP7-ENV-2011) projects. This study was also supported by the Spanish Ministry of Agriculture, Food and Environment (Resolución 15398, BOE n° 230). The OTC field site at La Higueruela Research Farm was made possible by an agreement between CIEMAT and Museo de Ciencias Naturales/CSIC. Appreciative acknowledgement is extended to Carlos Lacasta Dutoit, José María Gómez Camacho, and the La Higueruela/CSIC research farm staff for their valuable suggestions regarding the experimental design and their technical support with the field work. We are grateful to Dr. Alba Gutiérrez (UCM, Madrid) for helping with the multivariate analysis approach.

Author contribution statement

HCS, JS, and VBB conceived and designed the experiments. HCS, JS, VBB, SE, IGF, HGG, and RA performed the experiments. HCS, VBB, and MIR analyzed the data. HCS and VBB wrote the manuscript; all the authors provided editorial advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Calvete-Sogo.

Additional information

Communicated by Allan T. G. Green.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calvete-Sogo, H., González-Fernández, I., Sanz, J. et al. Heterogeneous responses to ozone and nitrogen alter the species composition of Mediterranean annual pastures. Oecologia 181, 1055–1067 (2016). https://doi.org/10.1007/s00442-016-3628-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-016-3628-z

Keywords

Navigation