Skip to main content

Advertisement

Log in

Forest succession and population viability of grassland plants: long repayment of extinction debt in Primula veris

  • Population ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Time lags in responses of organisms to deteriorating environmental conditions delay population declines and extinctions. We examined how local processes at the population level contribute to extinction debt, and how cycles of habitat deterioration and recovery may delay extinction. We carried out a demographic analysis of the fate of the grassland perennial Primula veris after the cessation of grassland management, where we used either a unidirectional succession model for forest habitat or a rotation model with a period of forest growth followed by a clear-cut and a new successional cycle. The simulations indicated that P. veris populations may have an extinction time of decades to centuries after a detrimental management change. A survey of the current incidence and abundance of P. veris in sites with different histories of afforestation confirmed the simulation results of low extinction rates. P. veris had reduced incidence and abundance only at sites with at least 100 years of forest cover. Time to extinction in simulations was dependent on the duration of the periods with favourable and unfavourable conditions after management cessation, and the population sizes and growth rates in these periods. Our results thus suggest that the ability of a species to survive is a complex function of disturbance regimes, rates of successional change, and the demographic response to environmental changes. Detailed demographic studies over entire successional cycles are therefore essential to identify the environmental conditions that enable long-term persistence and to design management for species experiencing extinction debts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anonymous (1985) Gallringsmallar. Södra Sverige, Skogsstyrelsen

    Google Scholar 

  • Beissinger SR (1995) Modeling extinction in periodic environments: everglades water levels and snail kite population viability. Ecol Appl 5:618–631. doi:10.2307/1941971

    Article  Google Scholar 

  • Bierzychudek P (1999) Looking backwards: assessing the projections of a transition matrix model. Ecol Appl 9:1278. doi:10.2307/2641396

    Article  Google Scholar 

  • Brys R, Jacquemyn H, Endels P, De Blust G, Hermy M (2005) Effect of habitat deterioration on population dynamics and extinction risks in a previously common perennial. Conserv Biol 19:1633–1643. doi:10.1111/j.1523-1739.2005.00216.x

    Article  Google Scholar 

  • Caswell H (2001) Matrix population models. Sinauer, Sunderland

    Google Scholar 

  • Cochran ME, Ellner S (1992) Simple methods for calculating age-based life history parameters for stage-structured populations. Ecol Monogr 62:345–364. doi:10.2307/2937115

    Article  Google Scholar 

  • Colling G, Matthies D (2006) Effects of habitat deterioration on population dynamics and extinction risk of an endangered, long-lived perennial herb (Scorzonera humilis). J Ecol 94:959–972. doi:10.1111/j.1365-2745.2006.01147.x

    Article  Google Scholar 

  • Crone EE, Menges ES, Ellis MM, Bell T, Bierzychudek P, Ehrlén J, Kaye TN, Knight TM, Lesica P, Morris WF, Oostermeijer G, Quintana-Ascencio PF, Stanley A, Ticktin T, Valverde T, Williams JL (2011) How do plant ecologists use matrix population models? Ecol Lett 14:1–8. doi:10.1111/j.1461-0248.2010.01540.x

    Article  PubMed  Google Scholar 

  • Crone EE, Ellis MM, Morris WF, Stanley A, Bell T, Bierzychudek P, Ehrlén J, Kaye TN, Knight TM, Lesica P, Oostermeijer G, Quintana-Ascencio PF, Ticktin T, Valverde T, Williams JL, Doak DF, Ganesan R, McEachern K, Thorpe AS, Menges ES (2013) Ability of matrix models to explain the past and predict the future of plant populations. Conserv Biol 27:968–978. doi:10.1111/cobi.12049

    Article  PubMed  Google Scholar 

  • Dahlgren J, Ehrlén J (2011) Incorporating environmental change over succession in an integral projection model of population dynamics of a forest herb. Oikos 120:1183–1190. doi:10.1111/j.1600-0706.2010.19063.x

    Article  Google Scholar 

  • Development Core Team R (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ehrlén J, Lehtilä K (2002) How perennial are perennial plants? Oikos 98:308–322. doi:10.1034/j.1600-0706.2002.980212.x

    Article  Google Scholar 

  • Ekstam U, Forshed N (1992) Om hävden upphör. Kärlväxter som indikatorarter i ängs- och hagmarker, Naturvårdsverket

    Google Scholar 

  • Eriksson O, Ehrlén J (2001) Landscape fragmentation and the viability of plant populations. In: Silvertown J, Antonovics J (eds) Integrating ecology and evolution in a spatial context. Blackwell Science, Oxford, pp 157–175

    Google Scholar 

  • Evans MEK, Holsinger KE, Menges ES (2010) Fire, vital rates, and population viability: a hierarchical Bayesian analysis of the endangered Florida scrub mint. Ecol Monogr 80:627–649. doi:10.1890/09-1758.1

    Article  Google Scholar 

  • Faraway JJ (2005) Linear models with R. Chapman and Hall, Boca Raton

    Google Scholar 

  • Faraway JJ (2006) Extending the linear model with R. Chapman and Hall, Boca Raton

    Google Scholar 

  • Fischer M, Stöcklin J (1997) Local extinctions of plants in remnants of extensively used calcareous grasslands 1950–1985. Conserv Biol 11:727–737. doi:10.1046/j.1523-1739.1997.96082.x

    Article  Google Scholar 

  • Gilbert B, Levine JM (2013) Plant invasions and extinction debts. PNAS 110:1744–1749. doi:10.1073/pnas.1212375110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Andujar JL, Fernandez-Quintanilla C, Navarrete L (2006) Population cycles produced by delayed density dependence in an annual plant. Am Nat 168:318–322. doi:10.1086/506915

    Article  CAS  PubMed  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Hylander K, Ehrlén J (2013) The mechanisms causing extinction debts. Trends Ecol Evol 28:341–346. doi:10.1016/j.tree.2013.01.010

    Article  PubMed  Google Scholar 

  • Inghe O, Tamm CO (1988) Survival and flowering of perennial herbs. V. Patterns of flowering. Oikos 51:203–219. doi:10.2307/3565644

    Article  Google Scholar 

  • Jackson ST, Sax DF (2010) Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol Evol 25:153–160. doi:10.1016/j.tree.2009.10.001

    Article  PubMed  Google Scholar 

  • Jacobson S, Pettersson F, Sikström U, Nyström K, Övergaard B (2008) INGVAR: gallringsmall och planeringsinstrument. Skogforsk 10(2008):1–4

    Google Scholar 

  • Jacquemyn H, Butaye J, Hermy M (2003) Influence of environmental and spatial variables on regional distribution of forest plant species in a fragmented and changing landscape. Ecography 26:768–776. doi:10.1111/j.0906-7590.2003.03620.x

    Article  Google Scholar 

  • Jonason D, Ibbe M, Milberg P, Tunér A, Westerberg L, Bergman KO (2014) Vegetation in clear-cuts depends on previous land use: a century-old grassland legacy. Ecol Evol 4:4287–4295. doi:10.1002/ece3.1288

    PubMed  PubMed Central  Google Scholar 

  • Kuussaari M, Bommarco R, Heikkinen RK, Helm A, Krauss J, Lindborg R, Öckinger E, Pärtel M, Pino J, Rodà F, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24:564–571. doi:10.1016/j.tree.2009.04.011

    Article  PubMed  Google Scholar 

  • Lehtilä K, Syrjänen K, Leimu R, Begoña Garcia M, Ehrlén J (2006) Habitat change and demography of Primula veris: identification of management targets. Conserv Biol 20:833–843. doi:10.1111/j.1523-1739.2006.00368.x

    Article  PubMed  Google Scholar 

  • Lindborg R, Ehrlén J (2002) Evaluating the extinction risk of a perennial herb: demographic data versus historical records. Conserv Biol 16:683–690. doi:10.1046/j.1523-1739.2002.00509.x

    Article  Google Scholar 

  • Lindborg R, Eriksson O (2004) Historical landscape connectivity affects present plant species diversity. Ecology 85:1840–1845. doi:10.1890/04-0367

    Article  Google Scholar 

  • Lindenmayer DB, Franklin JF (2002) Conserving forest biodiversity: a comprehensive multiscaled approach. Island Press, Washington

    Google Scholar 

  • Marcante S, Winkler E, Erschbamer B (2009) Population dynamics along a primary succession gradient: do alpine species fit into demographic succession theory? Ann Bot 103:1129–1143. doi:10.1093/aob/mcp047

    Article  PubMed  PubMed Central  Google Scholar 

  • Merow C, Latimer AM, Wilson AM, McMahon SM, Rebelo AG, Silander JA Jr (2014) On using integral projection models to generate demographically driven predictions of species’ distributions: development and validation using sparse data. Ecography 37:1167–1183. doi:10.1111/ecog.00839

    Article  Google Scholar 

  • Milberg P (1994) Germination ecology of the polycarpic grassland perennials Primula veris and Trollius europaeus. Ecography 17:3–8. doi:10.1111/j.1600-0587.1994.tb00071.x

    Article  Google Scholar 

  • Münzbergová Z, Mildén M, Ehrlén J, Herben T (2005) Population viability and reintroduction strategies: a spatially explicit landscape-level approach. Ecol Appl 15:1377–1386. doi:10.1890/04-1464

    Article  Google Scholar 

  • Ogle K, Reynolds JF (2004) Plant responses to precipitation in desert ecosystems: integrating functional types, pulses, thresholds, and delays. Oecologia 141:282–294. doi:10.1007/s00442-004-1507-5

    Article  PubMed  Google Scholar 

  • Quintana-Ascencio PF, Menges ES, Weekley CW (2003) A fire-explicit population viability analysis of Hypericum cumulicola in Florida rosemary scrub. Conserv Biol 17:433–449. doi:10.1046/j.1523-1739.2003.01431.x

    Article  Google Scholar 

  • Ramula S, Dinnétz P, Lehtilä K (2009) Spatial data replacing temporal data in population viability analyses: an empirical investigation for plants. Basic Appl Ecol 10:401–410. doi:10.1016/j.baae.2008.10.007

    Article  Google Scholar 

  • Schleuning M, Matthies D (2009) Habitat change and plant demography: assessing the extinction risk of a formerly common grassland perennial. Conserv Biol 23:174–183. doi:10.1111/j.1523-1739.2008.01054.x

    Article  PubMed  Google Scholar 

  • Silva JF, Raventos J, Caswell H, Trevisan MC (1991) Population responses to fire in a tropical savanna grass, Andropogon semiberbis: a matrix model approach. J Ecol 79:345–356. doi:10.2307/2260717

    Article  Google Scholar 

  • Tamm CO (1972) Survival and flowering of some perennial herbs. III. The behaviour of Primula veris on permanent plots. Oikos 23:159–166. doi:10.2307/3543401

    Article  Google Scholar 

  • Thompson K, Bakker J, Bekker R (1997) The soil seed banks of North West Europe: methodology, density ad longevity. Cambridge University Press, Cambridge

    Google Scholar 

  • Tilman D, Mary R, Lehman C, Nowak M (1994) Habitat destruction and the extinction debt. Nature 371:65–66. doi:10.1038/371065a0

    Article  Google Scholar 

  • Tuljapurkar S, Haridas CV (2006) Temporal autocorrelation and stochastic population growth. Ecol Lett 9:327–337. doi:10.1111/j.1461-0248.2006.00881.x

    Article  PubMed  Google Scholar 

  • Turchin P (1990) Rarity of density dependence or population regulation with lags? Nature 344:660–663. doi:10.1038/344660a0

    Article  Google Scholar 

  • Usher MB (1981) Modelling ecological succession, with particular reference to Markovian models. Vegetatio 46:11–18. doi:10.1007/978-94-009-7991-8_2

    Article  Google Scholar 

  • Valiente-Banuet A, Aizen MA, Alcántara JM, Arroyo J, Cocucci A, Galetti M, García MB, García D, Gómez JM, Jordano P, Medel R, Navarro L, Obeso JR, Oviedo R, Ramírez N, Rey PJ, Traveset A, Verdú M, Zamora R (2015) Beyond species loss: extinction of ecological interactions in a changing world. Funct Ecol 29:299–307. doi:10.1111/1365-2435.12356

    Article  Google Scholar 

  • Valverde T, Silvertown J (1997) A metapopulation model for Primula vulgaris, a temperate forest understorey herb. J Ecol 85:193–210. doi:10.2307/3546517

    Article  Google Scholar 

  • Wedderburn F, Richards AJ (1990) Variation in within-morph incompatibility inhibition sites in heteromorphic Primula L. New Phytol 116:149–162. doi:10.1111/j.1469-8137.1990.tb00520.x

    Article  Google Scholar 

  • Williams DW, Liebhold AM (1995) Detection of delayed density dependence: effects of autocorrelation in an exogenous factor. Ecology 3:1005–1008. doi:10.2307/1939363

    Article  Google Scholar 

  • Zeileis A, Kleiber C, Jackman S (2008) Regression models for count data in R. J Stat Softw 27(8). doi:10.18637/jss.v027.i08

Download references

Acknowledgments

We thank Malte Ehrlén and Juuso Lehtilä for their help in the fieldwork, and Rob Salguero-Gomez and an anonymous referee for comments on the manuscript. The Foundation of Baltic and East European Studies supported the study financially. M. B. G. was funded during the writing by a Spanish National Project (CGL2010-21642).

Author contribution statement

K. L., M. B. G., R. L., K. S. and J. E. planned and carried out the demographic studies. K. L., J. P. D. and J. E. designed the other field studies and the simulations, which K. L. carried out. K. L. had the main responsibility for manuscript writing; the other authors commented and made smaller contributions to the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kari Lehtilä.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Legal statement

The experiments comply with the current laws of Sweden and Finland in which the experiments were performed.

Additional information

Communicated by John Dwyer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lehtilä, K., Dahlgren, J.P., Garcia, M.B. et al. Forest succession and population viability of grassland plants: long repayment of extinction debt in Primula veris . Oecologia 181, 125–135 (2016). https://doi.org/10.1007/s00442-016-3569-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-016-3569-6

Keywords

Navigation