Skip to main content
Log in

Measuring feeding traits of a range of litter-consuming terrestrial snails: leaf litter consumption, faeces production and scaling with body size

  • Community ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Plant litter decomposition is an essential ecosystem function that contributes to energy and nutrient cycling above- and belowground. Terrestrial gastropods can affect this process in various ways: they consume and fragment leaf litter and create suitable habitats for microorganisms through the production of faeces and mucus. We assessed the contributions of ten litter-feeding terrestrial snail species to leaf litter mass loss and checked whether consumption rate and faeces production scale with body size (i.e. shell size and shape), which may indicate that morphological traits can serve as proxies for consumption rate. Additionally, we compared the consumption rates of a subset of these species among litter types of two plant species which differ in resource quality (Fraxinus excelsior and Betula pendula). These snail species differed in their litter consumption rates. Consumption rates differed between the two litter types, whereas the rank order of litter consumption by the different species was independent of litter quality. Consumption rate and faeces production were positively related to shell size, whereas relative consumption rate and faeces production were related to shell shape, with more elongated snail species having lower relative consumption rates and faeces production rates. Our results show that easily measurable morphological traits scale with the feeding traits of snails, and represent useful proxies for consumption rate and faeces production, which are laborious to measure. Thus, estimated potential total consumption rates of snail communities along environmental gradients may be inferred from shell-size distributions. Our study contributes to a systematic trait-based evaluation of the importance of gastropods to litter decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449. doi:10.2307/3546886

    Article  Google Scholar 

  • Badejo MA, Tian G (1999) Abundance of soil mites under four agroforestry tree species with contrasting litter quality. Biol Fertil Soils 30:107–112. doi:10.1007/s003740050595

    Article  Google Scholar 

  • Berg B et al (1993) Litter mass-loss rates in pine forests of Europe and Eastern United states—some relationships with climate and litter quality. Biogeochemistry 20:127–159. doi:10.1007/bf00000785

    Article  Google Scholar 

  • Berg M, De Ruiter P, Didden W, Janssen M, Schouten T, Verhoef H (2001) Community food web, decomposition and nitrogen mineralisation in a stratified Scots pine forest soil. Oikos 94:130–142. doi:10.1034/j.1600-0706.2001.09121.x

    Article  CAS  Google Scholar 

  • Box GEP, Cox DR (1964) An analysis of transformations. J R Stat Soc Ser B (Methodol) 26:211–252. doi:10.2307/2984418

    Google Scholar 

  • Bradford MA et al (2002) Impacts of soil faunal community composition on model grassland ecosystems. Science 298:615–618. doi:10.1126/science.1075805

    Article  CAS  PubMed  Google Scholar 

  • Bradford MA et al (2007) Carbon dynamics in a model grassland with functionally different soil communities. Funct Ecol 21:690–697. doi:10.1111/j.1365-2435.2007.01268.x

    Article  Google Scholar 

  • Cain AJ (1977) Variation in the spire index of some coiled gastropod shells, and its evolutionary significance. Philos Trans R Soc B 277:377–428. doi:10.2307/2417781

    Article  CAS  Google Scholar 

  • Cárcamo HA, Abe TA, Prescott CE, Holl FB, Chanway CP (2000) Influence of millipedes on litter decomposition, N mineralization, and microbial communities in a coastal forest in British Columbia, Canada. Can J For Res 30:817–826. doi:10.1139/cjfr-30-5-817

    Article  Google Scholar 

  • Cornelissen JHC (1996) An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. J Ecol 84:573–582

    Article  Google Scholar 

  • Cotrufo MF, Jésus M, Ineson P (1998) Elevated CO2 affects field decomposition rate and palatability of tree leaf litter: importance of changes in substrate quality. Soil Biol Biochem 30:1565–1571. doi:10.1016/S0038-0717(98)00032-7

    Article  CAS  Google Scholar 

  • Coulis M, Haettenschwiler S, Rapior S, Coq S (2009) The fate of condensed tannins during litter consumption by soil animals. Soil Biol Biochem 41:2573–2578. doi:10.1016/j.soilbio.2009.09.022

    Article  CAS  Google Scholar 

  • Coûteaux M-M, Bottner P, Berg B (1995) Litter decomposition, climate and litter quality. Trends Ecol Evol 10:63–66. doi:10.1016/s0169-5347(00)88978-8

    Article  PubMed  Google Scholar 

  • Coûteaux M-M, Aloui A, Kurz-Besson C (2002) Pinus halepensis litter decomposition in laboratory microcosms as influenced by temperature and a millipede, Glomeris marginata. Appl Soil Ecol 20:85–96. doi:10.1016/S0929-1393(02)00013-6

    Article  Google Scholar 

  • David JF, Malet N, Coûteaux MM, Roy J (2001) Feeding rates of the woodlouse Armadillidium vulgare on herb litters produced at two levels of atmospheric CO2. Oecologia 127:343–349. doi:10.1007/s004420000599

    Article  Google Scholar 

  • De Deyn GB, Raaijmakers CE, van Ruijven J, Berendse F, van der Putten WH (2004) Plant species identity and diversity effects on different trophic levels of nematodes in the soil food web. Oikos 106:576–586. doi:10.1111/j.0030-1299.2004.13265.x

    Article  Google Scholar 

  • Farlow JO (1976) Consideration of trophic dynamics of a late cretaceous large dinosaur community (Oldman formation). Ecology 57:841–857. doi:10.2307/1941052

  • Gallardo A, Merino J (1993) Leaf decomposition in two Mediterranean ecosystems of Southwest Spain—influence of substrate quality. Ecology 74:152–161. doi:10.2307/1939510

  • Glazier DS (2005) Beyond the ‘3/4-power law’: variation in the intra- and interspecific scaling of metabolic rate in animals. Biol Rev 80:611–662. doi:10.1017/s1464793105006834

    Article  PubMed  Google Scholar 

  • Handa IT, Aerts R, Berendse F, Berg MP, Bruder A, Butenschoen O, Chauvet E, Gessner MO, Jabiol J, Makkonen M, McKie BG, Malmqvist B, Peeters ETHM, Scheu S, Schmid B, van Ruijven J, Vos VCA, Hättenschwiler S (2014) Consequences of biodiversity loss for litter decomposition across biomes. Nature 509:218–221. doi:10.1038/nature13247

    Article  CAS  PubMed  Google Scholar 

  • Hansen RA (1999) Red oak litter promotes a microarthropod functional group that accelerates its decomposition. Plant Soil 209:37–45. doi:10.1023/a:1004506414711

    Article  CAS  Google Scholar 

  • Hättenschwiler S, Bretscher D (2001) Isopod effects on decomposition of litter produced under elevated CO2, N deposition and different soil types. Glob Change Biol 7:565–579. doi:10.1046/j.1365-2486.2001.00402.x

  • Hättenschwiler S, Gasser P (2005) Soil animals alter plant litter diversity effects on decomposition. Proc Natl Acad Sci USA 102:1519–1524. doi:10.1073/pnas.0404977102

  • Hättenschwiler S, Bühler S, Körner C (1999) Quality, decomposition and isopod consumption of tree litter produced under elevated CO2. Oikos 85:271–281. doi:10.2307/3546493

    Article  Google Scholar 

  • Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition interrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218. doi:10.1146/annurev.ecolsys.36.112904.151932

    Article  Google Scholar 

  • Hedde M, Bureau F, Akpa-Vinceslas M, Aubert M, Decaёns T (2007) Beech leaf degradation in laboratory experiments: effects of eight detritivorous invertebrate species. Appl Soil Ecol 35:291–301. doi:10.1016/j.apsoil.2006.08.002

    Article  Google Scholar 

  • Heemsbergen DA, Berg MP, Loreau M, van Hal JR, Faber JH, Verhoef HA (2004) Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science 306:1019–1020. doi:10.1126/science.1101865

    Article  CAS  PubMed  Google Scholar 

  • Hemmingsen AM (1960) Energy metabolism as related to body size and respiratory surfaces, and its evolution. Rep Steno Meml Hosp Nord Insul Lab (Cph) 9:1–110

    Google Scholar 

  • Jennings TJ, Barkham JP (1979) Litter decomposition by slugs in mixed deciduous forests. Holarct Ecol 2:21–29. doi:10.1111/j.1600-0587.1979.tb00678.x

    Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386. doi:10.2307/3545850

    Article  Google Scholar 

  • Kadamannaya BS, Sridhar KR (2009) Leaf litter ingestion and assimilation by two endemic pill millipedes (Arthrosphaera). Biol Fertil Soils 45:761–768. doi:10.1007/s00374-009-0391-x

    Article  Google Scholar 

  • Kasurinen A, Peltonen PA, Julkunen-Tiitto R, Vapaavuori E, Nuutinen V, Holopainen T, Holopainen JK (2007) Effects of elevated CO2 and O3 on leaf litter phenolics and subsequent performance of litter-feeding soil macrofauna. Plant Soil 292:25–43. doi:10.1007/s11104-007-9199-3

    Article  CAS  Google Scholar 

  • Lardies MA, Bozinovic F (2008) Genetic variation for plasticity in physiological and life-history traits among populations of an invasive species, the terrestrial isopod Porcellio laevis. Evolut Ecol Res 10:747–762

  • Lavelle P, Spain A (2001) Soil ecology. Kluwer, Dordrecht

  • Loureiro S, Sampaio A, Brandão A, Nogueira AJA, Soares A (2006) Feeding behaviour of the terrestrial isopod Porcellionides pruinosus Brandt, 1833 (Crustacea, Isopoda) in response to changes in food quality and contamination. Sci Total Environ 369:119–128. doi:10.1016/j.scitotenv.2006.05.023

    Article  CAS  PubMed  Google Scholar 

  • Maraun M, Scheu S (1996) Changes in microbial biomass, respiration and nutrient status of beech (Fagus sylvatica) leaf litter processed by millipedes (Glomeris marginata). Oecologia 107:131–140. doi:10.1007/bf00582243

    Article  Google Scholar 

  • Mason CF (1970a) Food, feeding rates, and assimilation in woodland snails. Oecologia 4:358–373. doi:10.1007/bf00393394

  • Mason CF (1970b) Snail populations, beech litter production, and the role of snails in litter decomposition. Oecologia 5:215–239

    Article  Google Scholar 

  • Newell PF (1967) Mollusca. In: Burgess A, Raw F (eds) Soil biology. Academic, London, pp 413–443

  • Nicolai V (1988) Phenolic and mineral content of leaves influences decomposition in European forest ecosystems. Oecologia 75:575–579. doi:10.1007/BF00776422

    Article  Google Scholar 

  • Parmelee RW, Beare MH, Blair JM (1989) Decomposition and nitrogen dynamics of surface weed residues in no-tillage agroecosystems under drought conditions—influence of resource quality on the decomposer community. Soil Biol Biochem 21:97–103. doi:10.1016/0038-0717(89)90017-5

    Article  Google Scholar 

  • Persson T, Lohm U (1977) Energetic significance of the annelids and arthropods in a Swedish grassland soil. Ecol Bull 23:1–211

  • Peters RH (1883) The ecological implications of body size. Cambridge University Press, Cambridge

    Google Scholar 

  • Petersen H, Luxton M (1982) A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 39:287–388. doi:10.2307/3544689

    Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/. Accessed 9 Feb 2015

  • Richardson AMM (1975) Food, feeding rates and assimilation in the land snail Cepaea nemoralis L. Oecologia 19:59–70

    Article  Google Scholar 

  • Rushton SP, Hassall M (1983) Food and feeding rates of the terrestrial isopod Armadillidium vulgare (Latreille). Oecologia 57:415–419. doi:10.1007/bf00377189

  • Seastedt TR (1984) The role of microarthropods in decomposition and mineralization processes. Annu Rev Entomol 29:25–46. doi:10.1146/annurev.ento.29.1.25

    Article  Google Scholar 

  • Sousa JP, Vingada JV, Loureiro S, da Gama MM, Soares A (1998) Effects of introduced exotic tree species on growth, consumption and assimilation rates of the soil detritivore Porcellio dilatatus (Crustacea: Isopoda). Appl Soil Ecol 9:399–403. doi:10.1016/S0929-1393(98)00096-1

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems, vol 5. University of California Press, Berkeley

    Google Scholar 

  • Tank JL, Rosi-Marshall EJ, Griffiths NA, Entrekin SA, Stephen ML (2010) A review of allochthonous organic matter dynamics and metabolism in streams. J N Am Benthol Soc 29:118–146. doi:10.1899/08-170.1

    Article  Google Scholar 

  • Theenhaus A, Scheu S (1996) The influence of slug (Arion rufus) mucus and cast material addition on microbial biomass, respiration, and nutrient cycling in beech leaf litter. Biol Fertil Soils 23:80–85. doi:10.1007/s003740050141

    Article  Google Scholar 

  • Valachovic YS, Caldwell BA, Cromack K Jr, Griffiths RP (2004) Leaf litter chemistry controls on decomposition of Pacific Northwest trees and woody shrubs. Can J For Res 34:2131–2147. doi:10.1139/x04-089

    Article  CAS  Google Scholar 

  • Van Vuuren MMI, Berendse F, de Visser W (1993) Species and site differences in the decomposition of litters and roots from wet heathlands. Can J Botany 71:167–173

    Article  Google Scholar 

  • Vasconcelos HL, Laurance WF (2005) Influence of habitat, litter type, and soil invertebrates on leaf-litter decomposition in a fragmented Amazonian landscape. Oecologia 144:456–462. doi:10.1007/s00442-005-0117-1

    Article  PubMed  Google Scholar 

  • Verhoef HA, Brussaard L (1990) Decomposition and nitrogen mineralization in natural agroecosystems—the contribution of soil animals. Biogeochemistry 11:175–211. doi:10.1007/bf00004496

    Article  Google Scholar 

  • Vos VCA, Van Ruijven J, Berg MP, Peeters ETHM, Berendse F (2011) Macro-detritivore identity drives leaf litter diversity effects. Oikos 120:1092–1098. doi:10.1111/j.1600-0706.2010.18650.x

  • Wall DH et al (2008) Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob Change Biol 14:2661–2677. doi:10.1111/j.1365-2486.2008.01672.x

    Google Scholar 

  • Wardle DA, Yeates GW, Barker GM, Bonner KI (2006) The influence of plant litter diversity on decomposer abundance and diversity. Soil Biol Biochem 38:1052–1062. doi:10.1016/j.soilbio.2005.09.003

    Article  CAS  Google Scholar 

  • Wright IJ et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827. doi:10.1038/nature02403

  • Zimmer M, Topp W (2000) Species-specific utilization of food sources by sympatric woodlice (Isopoda: Oniscidea). J Anim Ecol 69:1071–1082. doi:10.1046/j.1365-2656.2000.00463.x

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Swedish Research Council (grant to Jan Bengtsson) for funding Tina Astor’s work. Assistance provided by Thomas Janssen with parts of the experiments and measurements of shell dimensions by Florrie Huyer are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tina Astor.

Additional information

Communicated by Sylvain Pincebourde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astor, T., Lenoir, L. & Berg, M.P. Measuring feeding traits of a range of litter-consuming terrestrial snails: leaf litter consumption, faeces production and scaling with body size. Oecologia 178, 833–845 (2015). https://doi.org/10.1007/s00442-015-3257-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3257-y

Keywords

Navigation