Skip to main content

Advertisement

Log in

The dermal papilla dilemma and potential breakthroughs in bioengineering hair follicles

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The generation and growing of de novo hair follicles is the most daring hair replacement approach to treat alopecia. This approach has been explored at least since the 1960s without major success. Latest in the 1980s, the realization that the mesenchymal compartment of hair follicles, the dermal papilla (DP), is the crucial signaling center and element required for fulfilling this vision of hair follicle engineering, propelled research into the fibroblasts that occupy the DP. However, working with DP fibroblasts has been stubbornly frustrating. Decades of work in understanding the nature of DP fibroblasts in vitro and in vivo have led to the appreciation that hair follicle biology is complex, and the dermal papilla is an enigma. Functional DP fibroblasts tend to aggregate in 2D culture, while impaired DP cells do not. This fact has stimulated recent approaches to overcome the hurdles to DP cell culture by mimicking their natural habitat, such as growing DP fibroblasts in three dimensions (3D) by their self-aggregation, adopting 3D matrix scaffold, or bioprinting 3D microstructures. Furthermore, including keratinocytes in the mix to form hair follicle-like composite structures has been explored but remains a far cry from a useful and affordable method to generate human hair follicles in sufficient quantity and quality in a practical time frame for patients. This suggests that the current strategies may have reached their limitations in achieving successful hair follicle bioengineering for clinical applications. Novel approaches are required to overcome these barriers, such as focusing on embryonic cell types and processes in combination with emerging techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abaci HE, Coffman A, Doucet Y, Chen J, Jackow J, Wang E, Guo Z, Shin JU, Jahoda CA, Christiano AM (2018) Tissue engineering of human hair follicles using a biomimetic developmental approach. Nat Commun 9:5301

    Article  CAS  Google Scholar 

  • Abreu CM, Cerqueira MT, Pirraco RP, Gasperini L, Reis RL, Marques AP (2021) Rescuing key native traits in cultured dermal papilla cells for human hair regeneration. J Adv Res 30:103–112

    Article  CAS  Google Scholar 

  • Aisenbrey EA, Murphy WL (2020) Synthetic alternatives to Matrigel. Nat Rev Mater 5:539–551

    Article  CAS  Google Scholar 

  • Andl T, Ahn K, Kairo A, Chu EY, Wine-Lee L, Reddy ST, Croft NJ, Cebra-Thomas JA, Metzger D, Chambon P, Lyons KM, Mishina Y, Seykora JT, Crenshaw EB III, Millar SE (2004) Epithelial Bmpr1a regulates differentiation and proliferation in postnatal hair follicles and is essential for tooth development. Development 131:2257–2268

    Article  CAS  Google Scholar 

  • Asakawa K, Toyoshima KE, Ishibashi N, Tobe H, Iwadate A, Kanayama T, Hasegawa T, Nakao K, Toki H, Noguchi S, Ogawa M, Sato A, Tsuji T (2012) Hair organ regeneration via the bioengineered hair follicular unit transplantation. Sci Rep 2:424

    Article  Google Scholar 

  • Atac B, Kiss FM, Lam T, Fauler B, Edler C, Hu P, Tao TP, Jadicke M, Rutschle I, Azar RP, Youngquist S, Mielke T, Marx U, Lauster R, Lindner G, DiColandrea T (2020) The microfollicle: a model of the human hair follicle for in vitro studies. In Vitro Cell Dev Biol Anim 56:847–858

    Article  CAS  Google Scholar 

  • Balana ME, Charreau HE, Leiros GJ (2015) Epidermal stem cells and skin tissue engineering in hair follicle regeneration. World J Stem Cells 7:711–727

    Article  Google Scholar 

  • Betriu N, Jarrosson-Moral C, Semino CE (2020) Culture and differentiation of human hair follicle dermal papilla cells in a soft 3D self-assembling peptide scaffold. Biomolecules 10:684

    Article  CAS  Google Scholar 

  • Botchkarev VA, Kishimoto J (2003) Molecular control of epithelial-mesenchymal interactions during hair follicle cycling. J Investig Dermatol Symp Proc 8:46–55

    Article  CAS  Google Scholar 

  • Boyce ST, Simpson PS, Rieman MT, Warner PM, Yakuboff KP, Bailey JK, Nelson JK, Fowler LA, Kagan RJ (2017) Randomized, paired-site comparison of autologous engineered skin substitutes and split-thickness skin graft for closure of extensive, full-thickness burns. J Burn Care Res 38:61–70

    Article  Google Scholar 

  • Casale C, Imparato G, Urciuolo F, Netti PA (2016) Endogenous human skin equivalent promotes in vitro morphogenesis of follicle-like structures. Biomaterials 101:86–95

    Article  CAS  Google Scholar 

  • Castro AR, Logarinho E (2020) Tissue engineering strategies for human hair follicle regeneration: how far from a hairy goal? Stem Cells Transl Med 9:342–350

    Article  Google Scholar 

  • Chase H (1955) The physiology and histochemistry of hair growth. J Soc Cosmetic Chem 6:9–14

    Google Scholar 

  • Dong C, Lv Y (2016) Application of collagen scaffold in tissue engineering: recent advances and new perspectives. Polymers (Basel) 8:42

    Article  Google Scholar 

  • Dong K, Wang X, Shen Y, Wang Y, Li B, Cai C, Shen L, Guo Y (2021) Maintaining inducibility of dermal follicle cells on silk fibroin/sodium alginate scaffold for enhanced hair follicle regeneration. Biology (Basel) 10:269

    CAS  Google Scholar 

  • Enshell-Seijffers D, Lindon C, Kashiwagi M, Morgan BA (2010) beta-catenin activity in the dermal papilla regulates morphogenesis and regeneration of hair. Dev Cell 18:633–642

    Article  CAS  Google Scholar 

  • Fuchs E (2009) The tortoise and the hair: slow-cycling cells in the stem cell race. Cell 137:811–819

    Article  CAS  Google Scholar 

  • Fukuyama M, Tsukashima A, Kimishima M, Yamazaki Y, Okano H, Ohyama M (2021) Human iPS cell-derived cell aggregates exhibited dermal papilla cell properties in in vitro three-dimensional assemblage mimicking hair follicle structures. Front Cell Dev Biol 9:590333

    Article  Google Scholar 

  • Gat U, DasGupta R, Degenstein L, Fuchs E (1998) De Novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin. Cell 95:605–614

    Article  CAS  Google Scholar 

  • Gledhill K, Gardner A, Jahoda CB (2013) Isolation and establishment of hair follicle dermal papilla cell cultures. In: Turksen K (ed) Skin Stem Cells, vol 989. Humana Press, Methods in Molecular Biology, pp 285–292

    Chapter  Google Scholar 

  • Greco V, Chen T, Rendl M, Schober M, Pasolli HA, Stokes N, Dela Cruz-Racelis J, Fuchs E (2009) A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell 4:155–169

    Article  CAS  Google Scholar 

  • Green H (1977) Terminal differentiation of cultured human epidermal cells. Cell 11:405–416

    Article  CAS  Google Scholar 

  • Guo L, Wang X, Yuan J, Zhu M, Fu X, Xu RH, Wu C, Wu Y (2019) TSA restores hair follicle-inductive capacity of skin-derived precursors. Sci Rep 9:2867

    Article  Google Scholar 

  • Harshuk-Shabso S, Dressler H, Niehrs C, Aamar E, Enshell-Seijffers D (2020) Fgf and Wnt signaling interaction in the mesenchymal niche regulates the murine hair cycle clock. Nat Commun 11:5114

    Article  CAS  Google Scholar 

  • Havlickova B, Biro T, Mescalchin A, Tschirschmann M, Mollenkopf H, Bettermann A, Pertile P, Lauster R, Bodo E, Paus R (2009) A human folliculoid microsphere assay for exploring epithelial- mesenchymal interactions in the human hair follicle. J Invest Dermatol 129:972–983

    Article  CAS  Google Scholar 

  • Higgins CA, Chen JC, Cerise JE, Jahoda CA, Christiano AM (2013) Microenvironmental reprogramming by three-dimensional culture enables dermal papilla cells to induce de novo human hair-follicle growth. Proc Natl Acad Sci U S A 110:19679–19688

    Article  CAS  Google Scholar 

  • Higgins CA, Richardson GD, Ferdinando D, Westgate GE, Jahoda CA (2010) Modelling the hair follicle dermal papilla using spheroid cell cultures. Exp Dermatol 19:546–548

    Article  Google Scholar 

  • Horne KA, Jahoda CA, Oliver RF (1986) Whisker growth induced by implantation of cultured vibrissa dermal papilla cells in the adult rat. J Embryol Exp Morphol 97:111–124

    CAS  Google Scholar 

  • Inamatsu M, Matsuzaki T, Iwanari H, Yoshizato K (1998) Establishment of rat dermal papilla cell lines that sustain the potency to induce hair follicles from afollicular skin. J Invest Dermatol 111:767–775

    Article  CAS  Google Scholar 

  • Jahoda C, Oliver RF (1981) The growth of vibrissa dermal papilla cells in vitro. Br J Dermatol 105:623–627

    Article  CAS  Google Scholar 

  • Jahoda CA, Horne KA, Oliver RF (1984) Induction of hair growth by implantation of cultured dermal papilla cells. Nature 311:560–562

    Article  CAS  Google Scholar 

  • Jahoda CA, Mauger A, Bard S, Sengel P (1992) Changes in fibronectin, laminin and type IV collagen distribution relate to basement membrane restructuring during the rat vibrissa follicle hair growth cycle. J Anat 181(Pt 1):47–60

    CAS  Google Scholar 

  • Jahoda CA, Oliver RF (1984a) Changes in hair growth characteristics following the wounding of vibrissa follicles in the hooded rat. J Embryol Exp Morphol 83:81–93

    CAS  Google Scholar 

  • Jahoda CA, Oliver RF (1984b) Vibrissa dermal papilla cell aggregative behaviour in vivo and in vitro. J Embryol Exp Morphol 79:211–224

    CAS  Google Scholar 

  • Jang S, Ohn J, Kang BM, Park M, Kim KH, Kwon O (2020) “Two-cell assemblage” assay: a simple in vitro method for screening hair growth-promoting compounds. Front Cell Dev Biol 8:581528

    Article  Google Scholar 

  • Jevtic M, Lowa A, Novackova A, Kovacik A, Kaessmeyer S, Erdmann G, Vavrova K, Hedtrich S (2020) Impact of intercellular crosstalk between epidermal keratinocytes and dermal fibroblasts on skin homeostasis. Biochim Biophys Acta Mol Cell Res 1867:118722

    Article  CAS  Google Scholar 

  • Jorgensen AM, Yoo JJ, Atala A (2020) Solid organ bioprinting: strategies to achieve organ function. Chem Rev 120:11093–11127

    Article  CAS  Google Scholar 

  • Kageyama T, Yan L, Shimizu A, Maruo S, Fukuda J (2019) Preparation of hair beads and hair follicle germs for regenerative medicine. Biomaterials 212:55–63

    Article  CAS  Google Scholar 

  • Kalabusheva E, Terskikh V, Vorotelyak E (2017) Hair germ model in vitro via human postnatal keratinocyte-dermal papilla interactions: impact of hyaluronic acid. Stem Cells Int 2017:9271869

    Article  Google Scholar 

  • Kang BM, Kwack MH, Kim MK, Kim JC, Sung YK (2012) Sphere formation increases the ability of cultured human dermal papilla cells to induce hair follicles from mouse epidermal cells in a reconstitution assay. J Invest Dermatol 132:237–239

    Article  CAS  Google Scholar 

  • Kang D, Liu Z, Qian C, Huang J, Zhou Y, Mao X, Qu Q, Liu B, Wang J, Hu Z, Miao Y (2022) 3D bioprinting of a gelatin-alginate hydrogel for tissue-engineered hair follicle regeneration. Acta Biomater

  • Keaven EP, Cox AJ (1965) Organ culture of human skin**From the Departments of Dermatology and Pathology, Stanford University School of Medicine, Palo Alto, California. J Investig Dermatol 44:151–156

    Article  Google Scholar 

  • Kishimoto J, Burgeson RE, Morgan BA (2000) Wnt signaling maintains the hair-inducing activity of the dermal papilla. Genes Dev 14:1181–1185

    Article  CAS  Google Scholar 

  • Krugluger W, Rohrbacher W, Laciak K, Moser K, Moser C, Hugeneck J (2005) Reorganization of hair follicles in human skin organ culture induced by cultured human follicle-derived cells. Exp Dermatol 14:580–585

    Article  Google Scholar 

  • Krupa Shankar D, Chakravarthi M, Shilpakar R (2009) Male androgenetic alopecia: population-based study in 1,005 subjects. Int J Trichology 1:131–133

    Article  Google Scholar 

  • Lee J, van der Valk WH, Serdy SA, Deakin C, Kim J, Le AP, Koehler KR (2022) Generation and characterization of hair-bearing skin organoids from human pluripotent stem cells. Nat Protoc 17:1266–1305

    Article  CAS  Google Scholar 

  • Lei M, Schumacher LJ, Lai YC, Juan WT, Yeh CY, Wu P, Jiang TX, Baker RE, Widelitz RB, Yang L, Chuong CM (2017) Self-organization process in newborn skin organoid formation inspires strategy to restore hair regeneration of adult cells. Proc Natl Acad Sci U S A 114:E7101–E7110

    Article  CAS  Google Scholar 

  • Leiros GJ, Kusinsky AG, Drago H, Bossi S, Sturla F, Castellanos ML, Stella IY, Balana ME (2014) Dermal papilla cells improve the wound healing process and generate hair bud-like structures in grafted skin substitutes using hair follicle stem cells. Stem Cells Transl Med 3:1209–1219

    Article  CAS  Google Scholar 

  • Leng X, Wang P, Chen Z, Li D, Wen J, Zhang X, Qian H, Guo J, Wu X (2020) Dissociated skin cells regenerate hair follicles in a microwound, “The Punch Assay.” Exp Dermatol 29:349–356

    Article  Google Scholar 

  • Lillie FR, Wang H (1941) Physiology of development of the feather V. Experimental morphogenesis. Physiol Zool 14:103–135

    Article  Google Scholar 

  • Lillie FR, Wang H (1944) Physiology of development of the feather. VII. An experimental study of induction. Physiol Zool 17:1–31

    Article  Google Scholar 

  • Lillie JH, MacCallum DK, Jepsen A (1980) Fine structure of subcultivated stratified squamous epithelium grown on collagen rafts. Exp Cell Res 125:153–165

    Article  CAS  Google Scholar 

  • Lim TC, Leong MF, Lu H, Du C, Gao S, Wan AC, Ying JY (2013) Follicular dermal papilla structures by organization of epithelial and mesenchymal cells in interfacial polyelectrolyte complex fibers. Biomaterials 34:7064–7072

    Article  CAS  Google Scholar 

  • Limbu S, Higgins CA (2020) Isolating dermal papilla cells from human hair follicles using microdissection and enzyme digestion. In: Botchkareva NV, Westgate GE (eds) Molecular Dermatology. Methods in Molecular Biology. Springer US, New York, NY, pp 91–103

  • Lin B, Miao Y, Wang J, Fan Z, Du L, Su Y, Liu B, Hu Z, Xing M (2016) Surface tension guided hanging-drop: producing controllable 3D spheroid of high-passaged human dermal papilla cells and forming inductive microtissues for hair-follicle regeneration. ACS Appl Mater Interfaces 8:5906–5916

    Article  CAS  Google Scholar 

  • Lindner G, Horland R, Wagner I, Atac B, Lauster R (2011) De novo formation and ultra-structural characterization of a fiber-producing human hair follicle equivalent in vitro. J Biotechnol 152:108–112

    Article  CAS  Google Scholar 

  • Liu Y, Guerrero-Juarez CF, Xiao F, Shettigar NU, Ramos R, Kuan CH, Lin YC, de Jesus Martinez Lomeli L, Park JM, Oh JW, Liu R, Lin SJ, Tartaglia M, Yang RB, Yu Z, Nie Q, Li J, Plikus MV (2022) Hedgehog signaling reprograms hair follicle niche fibroblasts to a hyper-activated state. Dev Cell 57(1758–1775):e1757

    Google Scholar 

  • Mauger A, Emonard H, Hartmann DJ, Foidart JM, Sengel P (1987) Immunofluorescent localization of collagen types I, III and IV, fibronectin, laminin, and basement membrane proteoglycan in developing mouse skin. Rouxs Arch Dev Biol 196:295–302

    Article  CAS  Google Scholar 

  • Mesler AL, Benedeck RE, Wong SY (2021) Preparing the hair follicle canal for hair shaft emergence. Exp Dermatol 30:472–478

    Article  Google Scholar 

  • Messenger AG (1984) The culture of dermal papilla cells from human hair follicles. Br J Dermatol 110:685–689

    Article  CAS  Google Scholar 

  • Messenger AG, Elliott K, Temple A, Randall VA (1991) Expression of basement membrane proteins and interstitial collagens in dermal papillae of human hair follicles. J Invest Dermatol 96:93–97

    Article  CAS  Google Scholar 

  • Messenger AG, Senior HJ, Bleehen SS (1986) The in vitro properties of dermal papilla cell lines established from human hair follicles. Br J Dermatol 114:425–430

    Article  CAS  Google Scholar 

  • Mi J, Chen S, Xu L, Wen J, Xu X, Wu X (2019) Human reconstructed skin in a mouse model. Methods Mol Biol 1993:227–237

    Article  CAS  Google Scholar 

  • Miao Y, Sun YB, Liu BC, Jiang JD, Hu ZQ (2014) Controllable production of transplantable adult human high-passage dermal papilla spheroids using 3D matrigel culture. Tissue Eng Part A 20:2329–2338

    Article  CAS  Google Scholar 

  • Moattari CR, Jafferany M (2022) Psychological aspects of hair disorders: consideration for dermatologists, cosmetologists, aesthetic, and plastic surgeons. Skin Appendage Disord 8:186–194

    Article  Google Scholar 

  • Mu Z, Gao Y, Li K, Liu H, Zhang J (2021) Androgenetic alopecia among hospital staff: a study of prevalence, types and a comparison with general population in a secondary hospital in China. Clin Cosmet Investig Dermatol 14:1387–1392

    Article  Google Scholar 

  • Neil JE, Brown MB, Williams AC (2020) Human skin explant model for the investigation of topical therapeutics. Sci Rep 10:21192

    Article  CAS  Google Scholar 

  • Niehues H, Bouwstra JA, El Ghalbzouri A, Brandner JM, Zeeuwen P, van den Bogaard EH (2018) 3D skin models for 3R research: The potential of 3D reconstructed skin models to study skin barrier function. Exp Dermatol 27:501–511

    Article  Google Scholar 

  • Ohyama M, Kobayashi T, Sasaki T, Shimizu A, Amagai M (2012) Restoration of the intrinsic properties of human dermal papilla in vitro. J Cell Sci 125:4114–4125

    CAS  Google Scholar 

  • Oliver RF (1966a) Histological studies of whisker regeneration in the hooded rat. J Embryol Exp Morphol 16:231–244

    CAS  Google Scholar 

  • Oliver RF (1966b) Regeneration of dermal papillae in rat vibrissae. J Invest Dermatol 47:496–497

    Article  CAS  Google Scholar 

  • Oliver RF (1966c) Whisker growth after removal of the dermal papilla and lengths of follicle in the hooded rat. J Embryol Exp Morphol 15:331–347

    CAS  Google Scholar 

  • Oliver RF (1967) The experimental induction of whisker growth in the hooded rat by implantation of dermal papillae. J Embryol Exp Morphol 18:43–51

    CAS  Google Scholar 

  • Oliver RF (1970) The induction of hair follicle formation in the adult hooded rat by vibrissa dermal papillae. J Embryol Exp Morphol 23:219–236

    CAS  Google Scholar 

  • Osada A, Iwabuchi T, Kishimoto J, Hamazaki TS, Okochi H (2007) Long-term culture of mouse vibrissal dermal papilla cells and de novo hair follicle induction. Tissue Eng 13:975–982

    Article  CAS  Google Scholar 

  • Oshimori N, Fuchs E (2012) Paracrine TGF-beta signaling counterbalances BMP-mediated repression in hair follicle stem cell activation. Cell Stem Cell 10:63–75

    Article  CAS  Google Scholar 

  • Ouji Y, Ishizaka S, Yoshikawa M (2012) Dermal papilla cells serially cultured with Wnt-10b sustain their hair follicle induction activity after transplantation into nude mice. Cell Transplant 21:2313–2324

    Article  Google Scholar 

  • Pan J, Yung Chan S, Common JE, Amini S, Miserez A, Birgitte Lane E, Kang L (2013) Fabrication of a 3D hair follicle-like hydrogel by soft lithography. J Biomed Mater Res A 101:3159–3169

    Google Scholar 

  • Price JS, Allen S, Faucheux C, Althnaian T, Mount JG (2005) Deer antlers: a zoological curiosity or the key to understanding organ regeneration in mammals? J Anat 207:603–618

    Article  CAS  Google Scholar 

  • Qiao J, Philips E, Teumer J (2008a) A graft model for hair development. Exp Dermatol 17:512–518

    Article  Google Scholar 

  • Qiao J, Turetsky A, Kemp P, Teumer J (2008b) Hair morphogenesis in vitro: formation of hair structures suitable for implantation. Regen Med 3:683–692

    Article  Google Scholar 

  • Qiao J, Zawadzka A, Philips E, Turetsky A, Batchelor S, Peacock J, Durrant S, Garlick D, Kemp P, Teumer J (2009) Hair follicle neogenesis induced by cultured human scalp dermal papilla cells. Regen Med 4:667–676

    Article  Google Scholar 

  • Rahmani W, Abbasi S, Hagner A, Raharjo E, Kumar R, Hotta A, Magness S, Metzger D, Biernaskie J (2014) Hair follicle dermal stem cells regenerate the dermal sheath, repopulate the dermal papilla, and modulate hair type. Dev Cell 31:543–558

    Article  CAS  Google Scholar 

  • Rendl M, Polak L, Fuchs E (2008) BMP signaling in dermal papilla cells is required for their hair follicle-inductive properties. Genes Dev 22:543–557

    Article  CAS  Google Scholar 

  • Sriwiriyanont P, Lynch KA, McFarland KL, Supp DM, Boyce ST (2013) Characterization of hair follicle development in engineered skin substitutes. PLoS ONE 8:e65664

    Article  CAS  Google Scholar 

  • Stevenson S, Taylor AH, Meskiri A, Sharpe DT, Thornton MJ (2008) Differing responses of human follicular and nonfollicular scalp cells in an in vitro wound healing assay: effects of estrogen on vascular endothelial growth factor secretion. Wound Repair Regen 16:243–253

    Article  Google Scholar 

  • Su Y, Wen J, Zhu J, Xie Z, Liu C, Ma C, Zhang Q, Xu X, Wu X (2019) Pre-aggregation of scalp progenitor dermal and epidermal stem cells activates the WNT pathway and promotes hair follicle formation in in vitro and in vivo systems. Stem Cell Res Ther 10:403

    Article  Google Scholar 

  • Tan JJY, Common JE, Wu C, Ho PCL, Kang L (2019) Keratinocytes maintain compartmentalization between dermal papilla and fibroblasts in 3D heterotypic tri-cultures. Cell Prolif 52:e12668

    Article  Google Scholar 

  • Tan JJY, Nguyen DV, Common JE, Wu C, Ho PCL, Kang L (2021) Investigating PEGDA and GelMA microgel models for sustained 3D heterotypic dermal papilla and keratinocyte co-cultures. Int J Mol Sci 22:2143

    Article  CAS  Google Scholar 

  • Thangapazham RL, Klover P, Li S, Wang JA, Sperling L, Darling TN (2014a) A model system to analyse the ability of human keratinocytes to form hair follicles. Exp Dermatol 23:443–446

    Article  CAS  Google Scholar 

  • Thangapazham RL, Klover P, Wang JA, Zheng Y, Devine A, Li S, Sperling L, Cotsarelis G, Darling TN (2014b) Dissociated human dermal papilla cells induce hair follicle neogenesis in grafted dermal-epidermal composites. J Invest Dermatol 134:538–540

    Article  CAS  Google Scholar 

  • Tobin DJ (1992) Basal lamina-like material and hemidesmosome-like structures associated with dermal papilla cells in the normal human anagen hair follicle. Arch Dermatol Res 284:303–306

    Article  CAS  Google Scholar 

  • Topouzi H, Logan NJ, Williams G, Higgins CA (2017) Methods for the isolation and 3D culture of dermal papilla cells from human hair follicles. Exp Dermatol 26:491–496

    Article  CAS  Google Scholar 

  • Toyoshima KE, Asakawa K, Ishibashi N, Toki H, Ogawa M, Hasegawa T, Irie T, Tachikawa T, Sato A, Takeda A, Tsuji T (2012) Fully functional hair follicle regeneration through the rearrangement of stem cells and their niches. Nat Commun 3:784

    Article  Google Scholar 

  • Tsuboi R, Niiyama S, Irisawa R, Harada K, Nakazawa Y, Kishimoto J (2020) Autologous cell-based therapy for male and female pattern hair loss using dermal sheath cup cells: a randomized placebo-controlled double-blinded dose-finding clinical study. J Am Acad Dermatol 83:109–116

    Article  CAS  Google Scholar 

  • Vahav I, van den Broek LJ, Thon M, Monsuur HN, Spiekstra SW, Atac B, Scheper RJ, Lauster R, Lindner G, Marx U, Gibbs S (2020) Reconstructed human skin shows epidermal invagination towards integrated neopapillae indicating early hair follicle formation in vitro. J Tissue Eng Regen Med 14:761–773

    Article  CAS  Google Scholar 

  • Wainwright DJ (2009) Burn reconstruction: the problems, the techniques, and the applications. Clin Plast Surg 36:687–700

    Article  Google Scholar 

  • Wang H (1943) The morphogenetic functions of the epidermal and dermal components of the papilla in feather regeneration. Physiol Zool 16:325–350

    Article  Google Scholar 

  • Wang X, Wang J, Guo L, Wang X, Chen H, Wang X, Liu J, Tredget EE, Wu Y (2016) Self-assembling peptide hydrogel scaffolds support stem cell-based hair follicle regeneration. Nanomed Nanotechnol Biol Med 12:2115–2125

    Article  CAS  Google Scholar 

  • Wang Z, Li Z, Ji H (2021) Direct targeting of beta-catenin in the Wnt signaling pathway: current progress and perspectives. Med Res Rev 41:2109–2129

    Article  CAS  Google Scholar 

  • Wang Z, Wong P, Langbein L, Schweizer J, Coulombe PA (2003) Type II epithelial keratin 6hf (K6hf) is expressed in the companion layer, matrix, and medulla in anagen-stage hair follicles. J Invest Dermatol 121:1276–1282

    Article  CAS  Google Scholar 

  • Warren R, Chestnut MH, Wong TK, Otte TE, Lammers KM, Meili ML (1992) Improved method for the isolation and cultivation of human scalp dermal papilla cells. J Invest Dermatol 98:693–699

    Article  CAS  Google Scholar 

  • Weng T, Zhang W, Xia Y, Wu P, Yang M, Jin R, Xia S, Wang J, You C, Han C, Wang X (2021) 3D bioprinting for skin tissue engineering: current status and perspectives. J Tissue Eng 12:20417314211028576

    Article  Google Scholar 

  • Woo WM, Zhen HH, Oro AE (2012) Shh maintains dermal papilla identity and hair morphogenesis via a Noggin-Shh regulatory loop. Genes Dev 26:1235–1246

    Article  CAS  Google Scholar 

  • Yang CC, Cotsarelis G (2010) Review of hair follicle dermal cells. J Dermatol Sci 57:2–11

    Article  Google Scholar 

  • Yen CM, Chan CC, Lin SJ (2010) High-throughput reconstitution of epithelial-mesenchymal interaction in folliculoid microtissues by biomaterial-facilitated self-assembly of dissociated heterotypic adult cells. Biomaterials 31:4341–4352

    Article  CAS  Google Scholar 

  • Young RD (1980) Morphological and ultrastructural aspects of the dermal papilla during the growth cycle of the vibrissal follicle in the rat. J Anat 131:355–365

    CAS  Google Scholar 

  • Young TH, Lee CY, Chiu HC, Hsu CJ, Lin SJ (2008) Self-assembly of dermal papilla cells into inductive spheroidal microtissues on poly(ethylene-co-vinyl alcohol) membranes for hair follicle regeneration. Biomaterials 29:3521–3530

    Article  CAS  Google Scholar 

  • Young TH, Tu HR, Chan CC, Huang YC, Yen MH, Cheng NC, Chiu HC, Lin SJ (2009) The enhancement of dermal papilla cell aggregation by extracellular matrix proteins through effects on cell-substratum adhesivity and cell motility. Biomaterials 30:5031–5040

    Article  CAS  Google Scholar 

  • Yu M, Finner A, Shapiro J, Lo B, Barekatain A, McElwee KJ (2014) Hair follicles and their role in skin health. Expert Rev Dermatol 1:855–871

    Article  Google Scholar 

  • Zhang Q, Zu T, Zhou Q, Wen J, Leng X, Wu X (2017) The patch assay reconstitutes mature hair follicles by culture-expanded human cells. Regen Med 12:503–511

    Article  CAS  Google Scholar 

  • Zhang S, Holmes T, Lockshin C, Rich A (1993) Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci U S A 90:3334–3338

    Article  CAS  Google Scholar 

  • Zhong SP, Zhang YZ, Lim CT (2010) Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:510–525

    Article  CAS  Google Scholar 

  • Zhou F, Hong Y, Liang R, Zhang X, Liao Y, Jiang D, Zhang J, Sheng Z, Xie C, Peng Z, Zhuang X, Bunpetch V, Zou Y, Huang W, Zhang Q, Alakpa EV, Zhang S, Ouyang H (2020) Rapid printing of bio-inspired 3D tissue constructs for skin regeneration. Biomaterials 258:120287

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by NIH 1R21AR073380-01 (YZ), 1R21AR078976-01 (YZ), and 1R01AR077238-01A1 (YZ).

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the main manuscript text, and L. Z and Y.Z. prepared the figures. All authors reviewed and approved the final version to be published. All authors agree to be accountable for all aspects of the work and ensure that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved; furthermore, the authors have confidence in the integrity of the contributions of their coauthors.

Corresponding author

Correspondence to Yuhang Zhang.

Ethics declarations

Ethical approval

Not applicable.

Informed consent

Not applicable.

Conflict of interest

TA is a consultant for Stemson Therapeutics, LLC. All other authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andl, T., Zhou, L. & Zhang, Y. The dermal papilla dilemma and potential breakthroughs in bioengineering hair follicles. Cell Tissue Res 391, 221–233 (2023). https://doi.org/10.1007/s00441-022-03730-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-022-03730-w

Keywords

Navigation