Skip to main content
Log in

Immunohistochemical characterization of transient receptor potential vanilloid types 2 and 1 in a trinitrobenzene sulfonic acid-induced rat colitis model with visceral hypersensitivity

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Transient receptor potential vanilloid type 2 (TRPV2) and type 1 (TRPV1) are originally identified as heat-sensitive TRP channels. We compared the expression patterns of TRPV2 and TRPV1 in the rat distal colon and extrinsic primary afferent neurons, and investigated their roles in visceral hypersensitivity in 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis rats. Both TRPV2 and TRPV1 expressions in the colon, dorsal root ganglion (DRG), and nodose ganglion (NG) were significantly upregulated in the TNBS-induced colitis model. TRPV2 cell bodies co-localized with the intrinsic primary afferent marker NeuN and the inhibitory motor neuronal marker nNOS in the myenteric plexus. TRPV2 expressions were further detected in the resident macrophage marker ED2 in the mucosa. In contrast, no TRPV1-expressing cell bodies were detected in the myenteric plexus. Both TRPV2- and TRPV1-positive cell bodies in the DRG and NG were double-labeled with the neuronal retrograde tracer fluorescent fluorogold. Large- and medium-sized TRPV2-positive neurons were labeled with the A-fiber marker NF200, calcitonin gene-related peptide (CGRP), and substance P (SP) in the DRG while small-sized TRPV1-positive neurons were labeled with the C-fiber markers IB4, CGRP, and SP. TRPV2- and TRPV1-positive NG neurons were labeled with NF200 and IB4. TNBS treatment increased p-ERK1/2-positive cells in TRPV2 and TRPV1 neurons but did not affect the TRPV2 and TRPV1 subpopulations in the DRG and NG. Both TRPV2 and TRPV1 antagonists significantly alleviated visceral hypersensitivity in TNBS-induced colitis model rats. These findings suggest that intrinsic/extrinsic TRPV2- and extrinsic TRPV1-neurons contribute to visceral hypersensitivity in an experimental colitis model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

Download references

Funding

This work was supported in part by the Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan (#19K07109 and #22K06656 to Kenjiro Matsumoto).

Author information

Authors and Affiliations

Authors

Contributions

KM, SH, and SK planned and designed the experiments. FS, TM, TH, RO, and TN performed the experiments. KM, FS, TM, and SK analyzed the data. KM, and SK wrote the manuscript. KM, HY, MAK, and SK reviewed and discussed the data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kenjiro Matsumoto.

Ethics declarations

Ethical approval

All experiments involving animals were performed in accordance with the ARRIVE guidelines (McGrath and Lilley 2015). The protocols were approved by the Committee on the Ethics of Animal Research of Kyoto Pharmaceutical University, Japan (permit number: 18–019).

Informed consent

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsumoto, K., Sugimoto, F., Mizuno, T. et al. Immunohistochemical characterization of transient receptor potential vanilloid types 2 and 1 in a trinitrobenzene sulfonic acid-induced rat colitis model with visceral hypersensitivity. Cell Tissue Res 391, 287–303 (2023). https://doi.org/10.1007/s00441-022-03723-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-022-03723-9

Keywords

Navigation