Skip to main content

Advertisement

Log in

Plasma-derived extracellular vesicles transfer microRNA-130a-3p to alleviate myocardial ischemia/reperfusion injury by targeting ATG16L1

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Extracellular vesicles (EVs) are implicated in myocardial ischemia/reperfusion (I/R) injury as modulators by shuttling diverse cargoes, including microRNAs (miRNAs). The current study was initiated to unravel the potential involvement of plasma-derived EVs carrying miR-130a-3p on myocardial I/R injury. Rats were induced with moderate endoplasmic reticulum stress, followed by isolation of plasma-derived EVs. Then, an I/R rat model and hypoxia/reoxygenation (H/R) cardiomyoblast model were established to simulate a myocardial I/R injury environment where miR-130a-3p was found to be abundantly expressed. miR-130a-3p was confirmed to target and negatively regulate autophagy-related 16-like 1 (ATG16L1) in cardiomyoblasts. Based on a co-culture system, miR-130a-3p delivered by EVs derived from plasma protected H/R-exposed cardiomyoblasts against H/R-induced excessive cardiomyoblast autophagy, inflammation, and damage, improving cardiac dysfunction as well as myocardial I/R-induced cardiac dysfunction and tissue injury. The mechanism underlying the functional role of EVs-loaded miR-130a-3p was found to be dependent on its targeting relation with ATG16L1. The protective action of EV-carried miR-130a-3p was further re-produced in a rat model serving as in vivo validation as evidenced by improved cardiac function, tissue injury, myocardial fibrosis, and myocardial infarction. Collectively, miR-130a-3p shuttled by plasma-derived EVs was demonstrated to alleviate excessive cardiomyoblast autophagy and improve myocardial I/R injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ayuk SM, Abrahamse H, Houreld NN (2016) The role of photobiomodulation on gene expression of cell adhesion molecules in diabetic wounded fibroblasts in vitro. J Photochem Photobiol B 161:368–374. https://doi.org/10.1016/j.jphotobiol.2016.05.027

    Article  CAS  PubMed  Google Scholar 

  • Bei Y, Xu T, Lv D, Yu P, Xu J, Che L, Das A, Tigges J, Toxavidis V, Ghiran I, Shah R, Li Y, Zhang Y, Das S, Xiao J (2017) Exercise-induced circulating extracellular vesicles protect against cardiac ischemia-reperfusion injury. Basic Res Cardiol 112:38. https://doi.org/10.1007/s00395-017-0628-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi X, Zhang G, Wang X, Nguyen C, May HI, Li X, Al-Hashimi AA, Austin RC, Gillette TG, Fu G, Wang ZV, Hill JA (2018) Endoplasmic reticulum chaperone GRP78 protects heart from ischemia/reperfusion injury through Akt activation. Circ Res 122:1545–1554. https://doi.org/10.1161/CIRCRESAHA.117.312641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caccioppo A, Franchin L, Grosso A, Angelini F, D’Ascenzo F, Brizzi MF (2019) Ischemia reperfusion injury: mechanisms of damage/protection and novel strategies for cardiac recovery/regeneration. Int J Mol Sci. https://doi.org/10.3390/ijms20205024

    Article  PubMed  PubMed Central  Google Scholar 

  • Carbonell T, Gomes AV (2020) MicroRNAs in the regulation of cellular redox status and its implications in myocardial ischemia-reperfusion injury. Redox Biol 36:101607. https://doi.org/10.1016/j.redox.2020.101607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collett GP, Redman CW, Sargent IL, Vatish M (2018) Endoplasmic reticulum stress stimulates the release of extracellular vesicles carrying danger-associated molecular pattern (DAMP) molecules. Oncotarget 9:6707–6717. https://doi.org/10.18632/oncotarget.24158

  • Coppola-Segovia V, Cavarsan C, Maia FG, Ferraz AC, Nakao LS, Lima MM, Zanata SM (2017) ER stress induced by tunicamycin triggers alpha-synuclein oligomerization, dopaminergic neurons death and locomotor impairment: a new model of Parkinson’s disease. Mol Neurobiol 54:5798–5806. https://doi.org/10.1007/s12035-016-0114-x

    Article  CAS  PubMed  Google Scholar 

  • D’Ascenzo F, Femmino S, Ravera F, Angelini F, Caccioppo A, Franchin L, Grosso A, Comita S, Cavallari C, Penna C, De Ferrari GM, Camussi G, Pagliaro P, Brizzi MF (2021) Extracellular vesicles from patients with acute coronary syndrome impact on ischemia-reperfusion injury. Pharmacol Res 170:105715. https://doi.org/10.1016/j.phrs.2021.105715

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Chen H, Gao J, Liu Y, Li J, Wang J (2019) Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease. J Mol Cell Cardiol 136:27–41. https://doi.org/10.1016/j.yjmcc.2019.09.001

    Article  CAS  PubMed  Google Scholar 

  • Femmino S, Penna C, Margarita S, Comita S, Brizzi MF, Pagliaro P (2020) Extracellular vesicles and cardiovascular system: biomarkers and cardioprotective effectors. Vascul Pharmacol 135:106790. https://doi.org/10.1016/j.vph.2020.106790

    Article  CAS  PubMed  Google Scholar 

  • Figliolini F, Cantaluppi V, De Lena M, Beltramo S, Romagnoli R, Salizzoni M, Melzi R, Nano R, Piemonti L, Tetta C, Biancone L, Camussi G (2014) Isolation, characterization and potential role in beta cell-endothelium cross-talk of extracellular vesicles released from human pancreatic islets. PLoS ONE 9:e102521. https://doi.org/10.1371/journal.pone.0102521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita N, Itoh T, Omori H, Fukuda M, Noda T, Yoshimori T (2008) The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell 19:2092–2100. https://doi.org/10.1091/mbc.E07-12-1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gammoh N (2020) The multifaceted functions of ATG16L1 in autophagy and related processes. J Cell Sci. https://doi.org/10.1242/jcs.249227

    Article  PubMed  Google Scholar 

  • Gu H, Liu Z, Li Y, Xie Y, Yao J, Zhu Y, Xu J, Dai Q, Zhong C, Zhu H, Ding S, Zhou L (2018) Serum-derived extracellular vesicles protect against acute myocardial infarction by regulating miR-21/PDCD4 signaling pathway. Front Physiol 9:348. https://doi.org/10.3389/fphys.2018.00348

    Article  PubMed  PubMed Central  Google Scholar 

  • Ibanez B, Heusch G, Ovize M, Van de Werf F (2015) Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol 65:1454–1471. https://doi.org/10.1016/j.jacc.2015.02.032

    Article  PubMed  Google Scholar 

  • Jiang M, Liu T, Zhang J, Gao S, Tao B, Cao R, Qiu Y, Liu J, Li Y, Wang Y, Cao F (2020) Rapamycin promotes cardiomyocyte differentiation of human induced pluripotent stem cells in a stage-dependent manner. Stem Cells Dev 29:1229–1239. https://doi.org/10.1089/scd.2020.0025

    Article  CAS  PubMed  Google Scholar 

  • Kaczanowski S (2016) Apoptosis: its origin, history, maintenance and the medical implications for cancer and aging. Phys Biol 13:031001. https://doi.org/10.1088/1478-3975/13/3/031001

    Article  CAS  PubMed  Google Scholar 

  • Kanemoto S, Nitani R, Murakami T, Kaneko M, Asada R, Matsuhisa K, Saito A, Imaizumi K (2016) Multivesicular body formation enhancement and exosome release during endoplasmic reticulum stress. Biochem Biophys Res Commun 480:166–172. https://doi.org/10.1016/j.bbrc.2016.10.019

    Article  CAS  PubMed  Google Scholar 

  • Kreimer S, Belov AM, Ghiran I, Murthy SK, Frank DA, Ivanov AR (2015) Mass-spectrometry-based molecular characterization of extracellular vesicles: lipidomics and proteomics. J Proteome Res 14:2367–2384. https://doi.org/10.1021/pr501279t

    Article  CAS  PubMed  Google Scholar 

  • Li S, Li H, Yang D, Yu X, Irwin DM, Niu G, Tan H (2017) Excessive autophagy activation and increased apoptosis are associated with palmitic acid-induced cardiomyocyte insulin resistance. J Diabetes Res 2017:2376893. https://doi.org/10.1155/2017/2376893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Z, He H, Wang M, Liang J (2019) MicroRNA-130a controls bone marrow mesenchymal stem cell differentiation towards the osteoblastic and adipogenic fate. Cell Prolif 52:e12688. https://doi.org/10.1111/cpr.12688

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu H, Huan L, Yin J, Qin M, Zhang Z, Zhang Z, Zhang J, Wang S (2017a) Role of microRNA-130a in myocardial hypoxia/reoxygenation injury. Exp Ther Med 13:759–765. https://doi.org/10.3892/etm.2016.3984

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Jin X, Hu CF, Li R, Zhou Z, Shen CX (2017b) Exosomes derived from mesenchymal stem cells rescue myocardial ischaemia/reperfusion injury by inducing cardiomyocyte autophagy via AMPK and Akt pathways. Cell Physiol Biochem 43:52–68. https://doi.org/10.1159/000480317

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Wang X, Ha T, Hu Y, Liu L, Zhang X, Yu H, Miao J, Kao R, Kalbfleisch J, Williams D, Li C (2015) Attenuation of cardiac dysfunction and remodeling of myocardial infarction by microRNA-130a are mediated by suppression of PTEN and activation of PI3K dependent signaling. J Mol Cell Cardiol 89:87–97. https://doi.org/10.1016/j.yjmcc.2015.10.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo H, Li X, Li T, Zhao L, He J, Zha L, Qi Q, Yu Z (2019) microRNA-423-3p exosomes derived from cardiac fibroblasts mediates the cardioprotective effects of ischaemic post-conditioning. Cardiovasc Res 115:1189–1204. https://doi.org/10.1093/cvr/cvy231

    Article  CAS  PubMed  Google Scholar 

  • Ma S, Wang Y, Chen Y, Cao F (2015) The role of the autophagy in myocardial ischemia/reperfusion injury. Biochim Biophys Acta 1852:271–276. https://doi.org/10.1016/j.bbadis.2014.05.010

    Article  CAS  PubMed  Google Scholar 

  • Minghua W, Zhijian G, Chahua H, Qiang L, Minxuan X, Luqiao W, Weifang Z, Peng L, Biming Z, Lingling Y, Zhenzhen W, Jianqing X, Huihui B, Xiaozhong W, Xiaoshu C (2018) Plasma exosomes induced by remote ischaemic preconditioning attenuate myocardial ischaemia/reperfusion injury by transferring miR-24. Cell Death Dis 9:320. https://doi.org/10.1038/s41419-018-0274-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neri M, Riezzo I, Pascale N, Pomara C, Turillazzi E (2017) Ischemia/reperfusion injury following acute myocardial infarction: a critical issue for clinicians and forensic pathologists. Mediators Inflamm 2017:7018393. https://doi.org/10.1155/2017/7018393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Shea KM, Ananthakrishnan R, Li Q, Quadri N, Thiagarajan D, Sreejit G, Wang L, Zirpoli H, Aranda JF, Alberts AS, Schmidt AM, Ramasamy R (2017) The formin, DIAPH1, is a key modulator of myocardial ischemia/reperfusion Injury. EBioMedicine 26:165–174. https://doi.org/10.1016/j.ebiom.2017.11.012

    Article  PubMed  PubMed Central  Google Scholar 

  • Penna C, Femmino S, Tapparo M, Lopatina T, Fladmark KE, Ravera F, Comita S, Alloatti G, Giusti I, Dolo V, Camussi G, Pagliaro P, Brizzi MF (2020) The inflammatory cytokine IL-3 hampers cardioprotection mediated by endothelial cell-derived extracellular vesicles possibly via their protein cargo. Cells. https://doi.org/10.3390/cells10010013

    Article  PubMed  PubMed Central  Google Scholar 

  • Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383. https://doi.org/10.1083/jcb.201211138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rusinkevich V, Huang Y, Chen ZY, Qiang W, Wang YG, Shi YF, Yang HT (2019) Temporal dynamics of immune response following prolonged myocardial ischemia/reperfusion with and without cyclosporine A. Acta Pharmacol Sin 40:1168–1183. https://doi.org/10.1038/s41401-018-0197-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Hernandez CD, Torres-Alarcon LA, Gonzalez-Cortes A, Peon AN (2020) Ischemia/reperfusion injury: pathophysiology, current clinical management, and potential preventive approaches. Mediators Inflamm 2020:8405370. https://doi.org/10.1155/2020/8405370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sassoon DJ, Goodwill AG, Noblet JN, Conteh AM, Herring BP, McClintick JN, Tune JD, Mather KJ (2016) Obesity alters molecular and functional cardiac responses to ischemia/reperfusion and glucagon-like peptide-1 receptor agonism. Basic Res Cardiol 111:43. https://doi.org/10.1007/s00395-016-0563-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song H, Feng X, Zhang M, Jin X, Xu X, Wang L, Ding X, Luo Y, Lin F, Wu Q, Liang G, Yu T, Liu Q, Zhang Z (2018) Crosstalk between lysine methylation and phosphorylation of ATG16L1 dictates the apoptosis of hypoxia/reoxygenation-induced cardiomyocytes. Autophagy 14:825–844. https://doi.org/10.1080/15548627.2017.1389357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song H, Pu J, Wang L, Wu L, Xiao J, Liu Q, Chen J, Zhang M, Liu Y, Ni M, Mo J, Zheng Y, Wan D, Cai X, Cao Y, Xiao W, Ye L, Tu E, Lin Z, Wen J, Lu X, He J, Peng Y, Su J, Zhang H, Zhao Y, Lin M, Zhang Z (2015) ATG16L1 phosphorylation is oppositely regulated by CSNK2/casein kinase 2 and PPP1/protein phosphatase 1 which determines the fate of cardiomyocytes during hypoxia/reoxygenation. Autophagy 11:1308–1325. https://doi.org/10.1080/15548627.2015.1060386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun MH, Chen XC, Han M, Yang YN, Gao XM, Ma X, Huang Y, Li XM, Gai MT, Liu F, Ma YT, Chen BD (2019) Cardioprotective effects of constitutively active MEK1 against H2O2-induced apoptosis and autophagy in cardiomyocytes via the ERK1/2 signaling pathway. Biochem Biophys Res Commun 512:125–130. https://doi.org/10.1016/j.bbrc.2019.03.008

    Article  CAS  PubMed  Google Scholar 

  • Tan DX, Chen XX, Bai TZ, Zhang J, Li ZF (2020a) Sevoflurane up-regulates microRNA-204 to ameliorate myocardial ischemia/reperfusion injury in mice by suppressing Cotl1. Life Sci 259:118162. https://doi.org/10.1016/j.lfs.2020.118162

    Article  CAS  PubMed  Google Scholar 

  • Tan J, Shen J, Zhu H, Gong Y, Zhu H, Li J, Lin S, Wu G, Sun T (2020b) miR-378a-3p inhibits ischemia/reperfusion-induced apoptosis in H9C2 cardiomyocytes by targeting TRIM55 via the DUSP1-JNK1/2 signaling pathway. Aging (Albany NY) 12:8939–8952. https://doi.org/10.18632/aging.103106

  • Tan J, Wu Z, Liu J, Zhang W, Yuan W, Peng H (2020c) MicroRNA-203-mediated inhibition of doublecortin underpins cardioprotection conferred by sevoflurane in rats after myocardial ischaemia-reperfusion injury. J Cell Mol Med 24:9825–9838. https://doi.org/10.1111/jcmm.15566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L, Baldacchino S, Bauer NN, Baxter AA, Bebawy M, Beckham C, Bedina Zavec A, Benmoussa A, Berardi AC, Bergese P, Bielska E, Blenkiron C, Bobis-Wozowicz S, Boilard E, Boireau W, Bongiovanni A, Borras FE, Bosch S, Boulanger CM, Breakefield X, Breglio AM, Brennan MA, Brigstock DR, Brisson A, Broekman ML, Bromberg JF, Bryl-Gorecka P, Buch S, Buck AH, Burger D, Busatto S, Buschmann D, Bussolati B, Buzas EI, Byrd JB, Camussi G, Carter DR, Caruso S, Chamley LW, Chang YT, Chen C, Chen S, Cheng L, Chin AR, Clayton A, Clerici SP, Cocks A, Cocucci E, Coffey RJ, Cordeiro-da-Silva A, Couch Y, Coumans FA, Coyle B, Crescitelli R, Criado MF, D’Souza-Schorey C, Das S, Datta Chaudhuri A, de Candia P, De Santana EF, De Wever O, Del Portillo HA, Demaret T, Deville S, Devitt A, Dhondt B, Di Vizio D, Dieterich LC, Dolo V, Dominguez Rubio AP, Dominici M, Dourado MR, Driedonks TA, Duarte FV, Duncan HM, Eichenberger RM, Ekstrom K, El Andaloussi S, Elie-Caille C, Erdbrugger U, Falcon-Perez JM, Fatima F, Fish JE, Flores-Bellver M, Forsonits A, Frelet-Barrand A, Fricke F, Fuhrmann G, Gabrielsson S, Gamez-Valero A, Gardiner C, Gartner K, Gaudin R, Gho YS, Giebel B, Gilbert C, Gimona M, Giusti I, Goberdhan DC, Gorgens A, Gorski SM, Greening DW, Gross JC, Gualerzi A, Gupta GN, Gustafson D, Handberg A, Haraszti RA, Harrison P, Hegyesi H, Hendrix A, Hill AF, Hochberg FH, Hoffmann KF, Holder B, Holthofer H, Hosseinkhani B, Hu G, Huang Y, Huber V, Hunt S, Ibrahim AG, Ikezu T, Inal JM, Isin M, Ivanova A, Jackson HK, Jacobsen S, Jay SM, Jayachandran M, Jenster G, Jiang L, Johnson SM, Jones JC, Jong A, Jovanovic-Talisman T, Jung S, Kalluri R, Kano SI, Kaur S, Kawamura Y, Keller ET, Khamari D, Khomyakova E, Khvorova A, Kierulf P, Kim KP, Kislinger T, Klingeborn M, Klinke DJ, 2nd, Kornek M, Kosanovic MM, Kovacs AF, Kramer-Albers EM, Krasemann S, Krause M, Kurochkin IV, Kusuma GD, Kuypers S, Laitinen S, Langevin SM, Languino LR, Lannigan J, Lasser C, Laurent LC, Lavieu G, Lazaro-Ibanez E, Le Lay S, Lee MS, Lee YXF, Lemos DS, Lenassi M, Leszczynska A, Li IT, Liao K, Libregts SF, Ligeti E, Lim R, Lim SK, Line A, Linnemannstons K, Llorente A, Lombard CA, Lorenowicz MJ, Lorincz AM, Lotvall J, Lovett J, Lowry MC, Loyer X, Lu Q, Lukomska B, Lunavat TR, Maas SL, Malhi H, Marcilla A, Mariani J, Mariscal J, Martens-Uzunova ES, Martin-Jaular L, Martinez MC, Martins VR, Mathieu M, Mathivanan S, Maugeri M, McGinnis LK, McVey MJ, Meckes DG, Jr., Meehan KL, Mertens I, Minciacchi VR, Moller A, Moller Jorgensen M, Morales-Kastresana A, Morhayim J, Mullier F, Muraca M, Musante L, Mussack V, Muth DC, Myburgh KH, Najrana T, Nawaz M, Nazarenko I, Nejsum P, Neri C, Neri T, Nieuwland R, Nimrichter L, Nolan JP, Nolte-’t Hoen EN, Noren Hooten N, O’Driscoll L, O’Grady T, O’Loghlen A, Ochiya T, Olivier M, Ortiz A, Ortiz LA, Osteikoetxea X, Ostergaard O, Ostrowski M, Park J, Pegtel DM, Peinado H, Perut F, Pfaffl MW, Phinney DG, Pieters BC, Pink RC, Pisetsky DS, Pogge von Strandmann E, Polakovicova I, Poon IK, Powell BH, Prada I, Pulliam L, Quesenberry P, Radeghieri A, Raffai RL, Raimondo S, Rak J, Ramirez MI, Raposo G, Rayyan MS, Regev-Rudzki N, Ricklefs FL, Robbins PD, Roberts DD, Rodrigues SC, Rohde E, Rome S, Rouschop KM, Rughetti A, Russell AE, Saa P, Sahoo S, Salas-Huenuleo E, Sanchez C, Saugstad JA, Saul MJ, Schiffelers RM, Schneider R, Schoyen TH, Scott A, Shahaj E, Sharma S, Shatnyeva O, Shekari F, Shelke GV, Shetty AK, Shiba K, Siljander PR, Silva AM, Skowronek A, Snyder OL, 2nd, Soares RP, Sodar BW, Soekmadji C, Sotillo J, Stahl PD, Stoorvogel W, Stott SL, Strasser EF, Swift S, Tahara H, Tewari M, Timms K, Tiwari S, Tixeira R, Tkach M, Toh WS, Tomasini R, Torrecilhas AC, Tosar JP, Toxavidis V, Urbanelli L, Vader P, van Balkom BW, van der Grein SG, Van Deun J, van Herwijnen MJ, Van Keuren-Jensen K, van Niel G, van Royen ME, van Wijnen AJ, Vasconcelos MH, Vechetti IJ, Jr., Veit TD, Vella LJ, Velot E, Verweij FJ, Vestad B, Vinas JL, Visnovitz T, Vukman KV, Wahlgren J, Watson DC, Wauben MH, Weaver A, Webber JP, Weber V, Wehman AM, Weiss DJ, Welsh JA, Wendt S, Wheelock AM, Wiener Z, Witte L, Wolfram J, Xagorari A, Xander P, Xu J, Yan X, Yanez-Mo M, Yin H, Yuana Y, Zappulli V, Zarubova J, Zekas V, Zhang JY, Zhao Z, Zheng L, Zheutlin AR, Zickler AM, Zimmermann P, Zivkovic AM, Zocco D, Zuba-Surma EK (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7:1535750. https://doi.org/10.1080/20013078.2018.1535750

  • Valentim L, Laurence KM, Townsend PA, Carroll CJ, Soond S, Scarabelli TM, Knight RA, Latchman DS, Stephanou A (2006) Urocortin inhibits Beclin1-mediated autophagic cell death in cardiac myocytes exposed to ischaemia/reperfusion injury. J Mol Cell Cardiol 40:846–852. https://doi.org/10.1016/j.yjmcc.2006.03.428

    Article  CAS  PubMed  Google Scholar 

  • Vicencio JM, Yellon DM, Sivaraman V, Das D, Boi-Doku C, Arjun S, Zheng Y, Riquelme JA, Kearney J, Sharma V, Multhoff G, Hall AR, Davidson SM (2015) Plasma exosomes protect the myocardium from ischemia-reperfusion injury. J Am Coll Cardiol 65:1525–1536. https://doi.org/10.1016/j.jacc.2015.02.026

    Article  CAS  PubMed  Google Scholar 

  • Wang A, Zhang H, Liang Z, Xu K, Qiu W, Tian Y, Guo H, Jia J, Xing E, Chen R, Xiang Z, Liu J (2016) U0126 attenuates ischemia/reperfusion-induced apoptosis and autophagy in myocardium through MEK/ERK/EGR-1 pathway. Eur J Pharmacol 788:280–285. https://doi.org/10.1016/j.ejphar.2016.06.038

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Huang Y, Zhou C, Wu H, Zhao J, Wu L, Zhao M, Zhang F, Liu H (2018) The role of autophagy and related microRNAs in inflammatory bowel disease. Gastroenterol Res Pract 2018:7565076. https://doi.org/10.1155/2018/7565076

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang ZH, Liu JL, Wu L, Yu Z, Yang HT (2014) Concentration-dependent wrestling between detrimental and protective effects of H2O2 during myocardial ischemia/reperfusion. Cell Death Dis 5:e1297. https://doi.org/10.1038/cddis.2014.267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Kobayashi S, Chen K, Timm D, Volden P, Huang Y, Gulick J, Yue Z, Robbins J, Epstein PN, Liang Q (2013) Diminished autophagy limits cardiac injury in mouse models of type 1 diabetes. J Biol Chem 288:18077–18092. https://doi.org/10.1074/jbc.M113.474650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan B, Liu S, Li X, Zhong Y, Tong F, Yang S (2019) Preconditioning with endoplasmic reticulum stress alleviated heart ischemia/reperfusion injury via modulating IRE1/ATF6/RACK1/PERK and PGC-1alpha in diabetes mellitus. Biomed Pharmacother 118:109407. https://doi.org/10.1016/j.biopha.2019.109407

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Chen T, Xiong J, Hu B, Luo J, Xi Q, Jiang Q, Sun J, Zhang Y (2020) MiR-130a-3p inhibits PRL expression and is associated with heat stress-induced PRL reduction. Front Endocrinol (lausanne) 11:92. https://doi.org/10.3389/fendo.2020.00092

    Article  Google Scholar 

  • Zhang HD, Jiang LH, Sun DW, Li J, Ji ZL (2017) The role of miR-130a in cancer. Breast Cancer 24:521–527. https://doi.org/10.1007/s12282-017-0776-x

    Article  PubMed  Google Scholar 

  • Zhao J, Li X, Hu J, Chen F, Qiao S, Sun X, Gao L, Xie J, Xu B (2019) Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization. Cardiovasc Res 115:1205–1216. https://doi.org/10.1093/cvr/cvz040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Zheng X, Yang X (2019) Diagnostic and mechanistic values of microRNA-130a and microRNA-203 in patients with papillary thyroid carcinoma. J Cell Biochem. https://doi.org/10.1002/jcb.29498

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was partially supported by the National Natural Science Foundation (Nos. 81860316 and 81660284) and Key project of Natural Science Foundation of Jiangxi Province (No.20212ACB206021).

Author information

Authors and Affiliations

Authors

Contributions

S.S.Y., X.P.T., T.Z., and S.H.L. designed the study. H.B.R., H.L.W., F.P., and L.G.G. collated the data, designed and developed the database, carried out data analyses, and produced the initial draft of the manuscript. S.S.Y., X.P.T., T.Z., and S.H.L. contributed to drafting the manuscript. All authors have read and approved the final submitted manuscript.

Corresponding author

Correspondence to Lianggeng Gong.

Ethics declarations

Ethical approval

The experimental process was ratified by the ethics committee of the Second Affiliated Hospital of Nanchang University and all the study procedures involving animals were compliant with the “Guide for the Care and Use of Laboratory Animals” published by the US National Institutes of Health. Due measures were adopted to limit animals’ pain.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, S., Tang, X., Zheng, T. et al. Plasma-derived extracellular vesicles transfer microRNA-130a-3p to alleviate myocardial ischemia/reperfusion injury by targeting ATG16L1. Cell Tissue Res 389, 99–114 (2022). https://doi.org/10.1007/s00441-022-03605-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-022-03605-0

Keywords

Navigation