Skip to main content

Advertisement

Log in

Recent advances in research on nitrergic nerve-mediated vasodilatation

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Cerebral vascular resistance and blood flow were widely considered to be regulated solely by tonic innervation of vasoconstrictor adrenergic nerves. However, pieces of evidence suggesting that parasympathetic nitrergic nerve activation elicits vasodilatation in dog and monkey cerebral arteries were found in 1990. Nitric oxide (NO) as a neurotransmitter liberated from parasympathetic postganglionic neurons decreases cerebral vascular tone and resistance and increases cerebral blood flow, which overcome vasoconstrictor responses to norepinephrine liberated from adrenergic nerves. Functional roles of nitrergic vasodilator nerves are found also in peripheral vasculature, including pulmonary, renal, mesenteric, hepatic, ocular, uterine, nasal, skeletal muscle, and cutaneous arteries and veins; however, adrenergic nerve-induced vasoconstriction is evidently greater than nitrergic vasodilatation in these vasculatures. In coronary arteries, neurogenic NO-mediated vasodilatation is not clearly noted; however, vasodilatation is induced by norepinephrine released from adrenergic nerves that activates β1-adrenoceptors. Impaired actions of NO liberated from the endothelium and nitrergic neurons are suggested to participate in cerebral hypoperfusion, leading to brain dysfunction, like that in Alzheimer’s disease. Nitrergic neural dysfunction participates in impaired circulation in peripheral organs and tissues and also in systemic blood pressure increase. NO and vasodilator peptides, as sensory neuromediators, are involved in neurogenic vasodilatation in the skin. Functioning of nitrergic vasodilator nerves is evidenced not only in a variety of mammals, including humans and monkeys, but also in non-mammals. The present review article includes recent advances in research on the functional importance of nitrergic nerves concerning the control of cerebral blood flow, as well as other regions, and vascular resistance. Although information is still insufficient, the nitrergic nerve histology and function in vasculatures of non-mammals are also summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ADMA:

Asymmetric dimethylarginine

CGRP:

Calcitonin gene-related peptide

eNOS:

Endothelial NOS

5-HT:

5-Hydroxytryptamine

l-NA:

N G-nitro-l-arginine

NADPH:

Reduced nicotinamide adenine dinucleotide phosphate

l-NAME:

l-NA methylester

7-NI:

7-Nitroindazole

l-NMMA:

N G-monomethyl-l-arginine

nNOS:

Neuronal NOS

NO:

Nitric oxide

NOS:

Nitric oxide synthase

PIN:

Protein inhibitor of nNOS

l-SMTC:

S-methyl-l-thiocitrulline

SHR:

Spontaneously hypertensive rats

References

  1. Aoki H, Nakata M, Dezak K, Lu M, Gantuga D, Yamamoto K, Shimada K, Kario K, Yada T (2013) Ghrelin counteracts salt-induced hypertension via promoting diuresis and renal nitric oxide production in Dahl rats. Endocr J 60:571–581

    CAS  PubMed  Google Scholar 

  2. Aoki T, Nishimura M, Kataoka H, Ishibashi R, Nozaki K, Miyamoto S (2011) Complementary inhibition of cerebral aneurysm formation by eNOS and nNOS. Lab Investig 91:619–626

    CAS  PubMed  Google Scholar 

  3. Aras-López R, Xavier FE, Ferrer M, Balfagón G (2009) Dexamethasone decreases neuronal nitric oxide release in mesenteric arteries from hypertensive rats through decreased protein kinase C. Clin Sci (Lond) 117:305–312

    Google Scholar 

  4. Axelsson M, Olsson C, Gibbins I, Holmgren S, Franklin CE (2001) Nitric oxide, a potent vasodilator of the aortic anastomosis in the estuarine crocodile, Crocodylus porosus. Gen Comp Endocrinol 122:198–204

    CAS  PubMed  Google Scholar 

  5. Ayajiki K, Fujioka H, Noda K, Okamura T, Toda N (2001) Modifications by sumatriptan and acetylcholine of nitric oxide-mediated neurogenic dilatation in dog cerebral arteries. Eur J Pharmacol 420:67–72

    CAS  PubMed  Google Scholar 

  6. Ayajiki K, Fujioka H, Okamura T, Toda N (2001) Relatively selective neuronal nitric oxide synthase inhibition by 7-nitroindazol in monkey cerebral arteries. Eur J Pharmacol 423:179–183

    CAS  PubMed  Google Scholar 

  7. Ayajiki K, Okamura T, Toda N (1993) Nitric oxide mediates, and acetylcholine modulates, neutrally-induced relaxation of bovine cerebral arteries. Neuroscience 54:819–825

    CAS  PubMed  Google Scholar 

  8. Ayajiki K, Okamura T, Noda K, Toda N (2002) Functional study on nitroxidergic nerve in isolated dog pulmonary arteries and veins. Jpn J Pharmacol 89:197–200

    CAS  PubMed  Google Scholar 

  9. Ayajiki K, Ozeki Y, Wang C, Okamura T (2008) Cilostazol’s effect on the response to perivascular nerve stimulation in isolated dog cerebral and mesenteric arteries. Hypertens Res 31:1425–1433

    PubMed  Google Scholar 

  10. Beetson KA, Snith SF, Muneer A, Cameron NE, Cotter MA, Cellek S (2013) Vasa nervorum in rat major pelvic ganglion are innervated by nitrergic nerve fibers. J Sex Med 10:2967–2974

    CAS  PubMed  Google Scholar 

  11. Berg T (2005) Increased counteracting effect of eNOS and nNOS on an α1-adrenergic rise in total peripheral vascular resistance in spontaneous hypertensive rats. Cardiovasc Res 67:736–744

    CAS  PubMed  Google Scholar 

  12. Bergua A, Schödl F, Neuhuber ML (2003) Vasoactive intestinal and calcitonin-gene-related peptides, tyrosine hydroxylase and nitrergic markers in the innervation of the rat central retinal artery. Exp Eye Res 77:367–374

    CAS  PubMed  Google Scholar 

  13. Biecker E, Neef M, Sägesser H, Shaw S, Koshy A, Reichen J (2004) Nitric oxide synthase 1 is partly compensating for nitric oxide synthase 3 deficiency in nitric oxide synthase 3 knock-out mice and is elevated in murine and human cirrhosis. Liver Int 24:345–353

    CAS  PubMed  Google Scholar 

  14. Brack KE, Coote JH, Ng GA (2011) Vagus nerve stimulation protects against ventricular fibrillation independent of muscarinic receptor activation. Cardiovasc Res 91:437–446

    CAS  PubMed  Google Scholar 

  15. Broughton BR, Donald JA (2005) Nitric oxide control of large veins in the toad Bufo marinus. J Comp Physiol B 175:157–166

    CAS  PubMed  Google Scholar 

  16. Brown LA, Key BJ, Lovick TA (2000) Fluorescent imaging of nitric oxide production in neuronal varicosities associated with intraparenchymal arterioles in rat hippocampal slices. Neurosci Lett 294:9–12

    CAS  PubMed  Google Scholar 

  17. Burke M, Bührle C (2006) BOLD response during uncoupling of neuronal activity and CBF. Neuroimage 32:1–8

    CAS  PubMed  Google Scholar 

  18. Cellek S, Anderson PN, Foxwell NA (2005) Nitrergic neurodegeneration in cerebral arteries of streptozotocin-induced diabetic rats: a new insight into diabetic stroke. Diabetes 54:212–219

    CAS  PubMed  Google Scholar 

  19. Chang HH, Lee YC, Chen MF, Kuo JS, Lee J (2012) Sympathetic activation increases basilar arterial blood flow in normotensive but not hypertensive rats. Am J Physiol 302:H1123–H1130

    CAS  Google Scholar 

  20. Dautzenberg M, Keilhoff G, Just A (2011) Modulation of the myogenic response in renal blood flow autoregulation by NO depends on endothelial nitric oxide synthase (eNOS), but not neuronal or inducible NOS. J Physiol 589:4731–4744

    PubMed Central  CAS  PubMed  Google Scholar 

  21. de la Torre JC, Aliev G (2005) Inhibition of vascular nitric oxide after rat chronic brain hypoperfusion: spatial memory and immunocytochemical changes. J Cereb Blood Flow Metab 25:663–672

    PubMed  Google Scholar 

  22. Eppel GA, Denton KM, Malpas SC, Evans RG (2003) Nitric oxide in responses of regional kidney perfusion to renal nerve stimulation and renal ischemia. Pflügers Arch 447:205–213

    CAS  PubMed  Google Scholar 

  23. Esteban FJ, Jiménez A, Barroso JB, Pedrosa JA, del Moral ML, Rodrigo J, Peinado MA (1998) The innervation of rainbow trout (Oncorhynchus mykiss) liver: protein gene product 9.5 and neuronal nitric oxide synthase immunoreactivities. J Anat 193:241–249

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Esteban FJ, Jiménez A, Fernández AP, del Moral ML, Sánchez-López AM, Hernández R, Garrosa M, Pedrosa JA, Rodrigo J, Peinado MA (2001) Neuronal nitric oxide synthase immunoreactivity in the guinea-pig liver: distribution and colocalization with neuropeptides Y and calcitonin gene-related peptide. Liver 21:372–379

    Google Scholar 

  25. Faraci FM (2011) Protecting against vascular disease in brain. Am J Physiol 3000:H1566–H1582

    Google Scholar 

  26. Faraci FM, Heistad DD (1990) Regulation of large cerebral arteries and cerebral microvascular pressure. Circ Res 66:8–17

    CAS  PubMed  Google Scholar 

  27. Fischer A, Canning BJ, Kummer W (1996) Correlation of vasoactive intestinal peptide and nitric oxide synthase with choline acetyltransferase in the airway innervation. Ann NY Acad Sci 805:717–722

    CAS  PubMed  Google Scholar 

  28. Furchgott RF (1988) Studies on relaxation of rabbit aorta by sodium nitrite: the basis for the proposal that the acid-activatable inhibitory factor from retractor penis is inorganic nitrite and the endothelium-derived relaxing factor is nitric oxide. In: Vanhoutte PM (ed) Vasodilatation: vascular smooth muscle, peptides, autonomic nerve and endothelium. Raven, New York, pp 401–414

    Google Scholar 

  29. Furchgott RF, Zawadzki JV (1980) Obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature (Lond) 288:373–376

    CAS  Google Scholar 

  30. Furfine ES, Harmon MF, Paith JE, Knowles RG, Salter M, Kiff RJ, Duffy C, Hazelwood R, Oplinger JA, Garvey EP (1994) Potent and selective inhibition of human nitric oxide synthases. Selective inhibition of neuronal nitric oxide synthase by S-methyl-L-thiocitrulline and S-ethyl-L-thiocitrulline. J Biol Chem 269:26677–26683

    CAS  PubMed  Google Scholar 

  31. Ghorbani A, Chitsaz A, Shishegar M, Akbari M (2010) Evaluation of the effect of donepezil on cerebral blood flow velocity in Alzheimer’s disease. Neurosciences (Riyadh) 15:172–176

    Google Scholar 

  32. Gonzáles-Luis G, Fletcher AJ, Moreno L, Pérez-Vizcaíno F, Blanco CE, Villamor E (2007) Nitric oxide-mediated nonadrenergic noncholinergic relaxation of piglet pulmonary arteries decreases with postnatal age. J Physiol Pharmacol 58:45–56

    PubMed  Google Scholar 

  33. Gottanka J, Kirch W, Tamm ER (2005) The origin of extrinsic nitrergic axons supplying the human eye. J Anat 206:225–229

    PubMed Central  PubMed  Google Scholar 

  34. Haberberg R, Schemann M, Sann H, Kumer W (1997) Innervation pattern of guinea pig pulmonary vasculature depend on vascular diameter. J Appl Physiol 82:426–434

    Google Scholar 

  35. Hoffman BB, Taylor P (2001) Chapter 6. Neurotransmission, the autonomic and somatic motor nervous systems. In: Hardman JG, Limbird LE (eds) Goodman & Gilman’s the pharmacological basis of therapeutics, 10th edn. McGraw-Hill, New York, pp 115–153

    Google Scholar 

  36. Hojná S, Kuneš J, Zicha J (2010) Alterations of NO synthase isoforms in brain and kidney of rats with genetic and salt hypertension. Physiol Res 59:997–1009

    PubMed  Google Scholar 

  37. Huang CF, Hsu CN, Chien SJ, Lin YJ, Huang LT, Tain YL (2013) Aminoguanidine attenuates hypertension, whereas 7-nitroindazole exacerbates kidney damage in spontaneously hypertensive rats: the role of nitric oxide. Eur J Pharmacol 699:233–240

    CAS  PubMed  Google Scholar 

  38. Hudez AG, Wood JD, Kampine JP (2000) 7-Nitroindazol impedes erythrocyte flow response to isovolumic hemodilution in the cerebral capillary circulation. J Cereb Blood Flow Metab 20:220–224

    Google Scholar 

  39. Ichihara A, Inscho EW, Imig JD, Navar LG (1998) Neuronal nitric oxide synthase modulates rat renal microvascular function. Am J Physiol 274:F516–F524

    CAS  PubMed  Google Scholar 

  40. Ignacio CS, Curling PE, Childres WF, Bryan RM (1997) Nitric oxide synthesizing perivascular nerves in the rat middle cerebral artery. Am J Physiol 273:R661–R668

    CAS  PubMed  Google Scholar 

  41. Jennings BL, Broughton BR, Donald JA (2004) Nitric oxide control of the dorsal aorta and the intestinal vein of the Australian short-finned eel Anguilla australis. J Exp Biol 207:1295–1303

    CAS  PubMed  Google Scholar 

  42. Jennings BL, Donald JA (2008) Neurally-derived nitric oxide regulates vascular tone in pulmonary and cutaneous arteries of the toad, Bufo marinus. Am J Physiol 295:R1640–R1646

    CAS  Google Scholar 

  43. Jiang F, Li CG, Rand MJ (1997) Effect of hydroxocobalamin on vasodilatations to nitrergic transmitter, nitric oxide and endothelium-derived relaxing factor in guinea-pig basilar artery. Eur J Pharmacol 340:181–186

    CAS  PubMed  Google Scholar 

  44. Jiménez A, Esteban FJ, Sánchez-López AM, Pedrosa JA, Del Moral ML, Hernández R, Blanco S, Barroso JB, Rodrigo J, Peinado MA (2001) Immunohistochemical localization of neuronal nitric oxide synthase in the rainbow trout kidney. J Chem Neuroanat 21:289–294

    PubMed  Google Scholar 

  45. Johnson JM, Kellogg DL Jr (2010) Local thermal control of the human cutaneous circulation. J Appl Physiol 109:1229–1238

    PubMed Central  PubMed  Google Scholar 

  46. Jurzik L, Froh M, Straub RH, Schólmerich J, Wiest R (2005) Up-regulation of nNOS and associated increase in nitrergic vasodilation in superior mesenteric arteries in pre-hepatic portal hypertension. J Hepatol 43:258–265

    CAS  PubMed  Google Scholar 

  47. Knipping S, Holzhausen HJ, Berghaus A, Bloching M, Riederer A (2005) Ultrastructural detection of nitric oxide in human nasal mucosa. Otolaryngol Head Neck Surg 132:620–625

    PubMed  Google Scholar 

  48. Koyama T, Hatanaka Y, Jin X, Yokomizo A, Fujiwara H, Goda M, Hobara M, Zamami Y, Kitamura Y, Kawasaki H (2010) Altered function of nitrergic nerves inhibiting sympathetic neurotransmission in mesenteric vascular beds of renovascular hypertensive rats. Hypertens Res 33:485–491

    CAS  PubMed  Google Scholar 

  49. Lau KS, Grange RW, Isotani E, Sarelius IH, Kamm KE, Huang PL, Stull JT (2000) nNOS and eNOS modulate cGMP formation and vascular response in contracting fast-twitch skeletal muscle. Physiol Genomics 2:21–27

    CAS  PubMed  Google Scholar 

  50. Lee TJ, Sarwinski SJ (1991) Nitric oxidergic neurogenic vasodilation in the porcine basilar artery. Blood Vessel 28:407–412

    CAS  Google Scholar 

  51. Lee TJ, Su C, Bevan JA (1975) Nonsympathetic dilator innervation of cat cerebral arteries. Experientia 31:1424–1426

    CAS  PubMed  Google Scholar 

  52. Linnik MD, Lee TJ (1989) Effect of hemoglobin on neurogenic responses and cholinergic parameters in porcine cerebral arteries. J Cereb Blood Flow Metab 9:219–225

    CAS  PubMed  Google Scholar 

  53. Martin W, Villani GM, Jothianandan D, Furchgott RF (1985) Blockade of endothelium-dependent and glyceryl trinitrate relaxation of rabbit aorta by certain ferrous hemoproteins. J Pharmacol Exp Ther 233:679–685

    CAS  PubMed  Google Scholar 

  54. Mattson DL, Meister CJ (2005) Renal cortical and medullary blood flow responses to L-NAME and ANG II in wild-type, nNOS null mutant, and eNOS null mutant mice. Am J Physiol 289:R991–R997

    CAS  Google Scholar 

  55. McCuskey RS (2004) Anatomy of efferent hepatic nerves. Anat Rec A: Discov Mol Cell Evol Biol 280:821–826

    Google Scholar 

  56. Merhi M, Dusting GJ, Khalil Z (1998) CGRP and nitric oxide of neuronal origin and their involvement in neurogenic vasodilatation in rat skin microvasculature. Br J Pharmacol 123:863–868

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Moleda L, Jurzik L, Froh M, Gäbele E, Hellerbrand C, Straub RH, Schölmerich J, Wiest R (2010) Role of HSP-90 for increased nNOS-mediated vasodilation in mesenteric arteries in portal hypertension. World J Gastroenterol 16:1837–1844

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Moore PK, Babbedge RC, Wallace P, Gaffen ZA, Hart SL (1993) 7-Nitroindazole, an inhibitor of nitric oxide synthase, exhibits anti-nociceptive activity in the mouse without increasing blood pressure. Br J Pharmacol 108:296–297

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Nangle MR, Gibson TM, Cotter MA, Cameron NE (2006) Effects of eugenol on nerve and vascular dysfunction in streptozotocin-diabetic rats. Planta Med 72:494–500

    CAS  PubMed  Google Scholar 

  60. Ogawa F, Hanamitsu M, Ayajiki K, Aimi Y, Okamura T, Shimizu T (2010) Effect of nitric oxide synthase inhibitor on increase in nasal mucosal blood flow induced by sensory and parasympathetic nerve stimulation in rats. Ann Otol Rhinol Laryngol 119:424–430

    PubMed  Google Scholar 

  61. Okamura T, Ayajiki K, Toda N (1996) Neural mechanism of pressor action of nitric oxide synthase inhibitor in anesthetized monkeys. Hypertension 28:341–346

    CAS  PubMed  Google Scholar 

  62. Okamura T, Ayajiki K, Toda N (2001) Hypothermia on NO-mediated neurogenic relaxation and on hypoxic inhibition in the response of canine cerebral arteries. Hypertens Res 24:47–53

    CAS  PubMed  Google Scholar 

  63. Okamura T, Ayajiki K, Uchiyama M, Toda N (1999) Neurogenic vasodilatation of canine isolated small labial arteries. J Pharmacol Exp Ther 288:1031–1036

    CAS  PubMed  Google Scholar 

  64. Okamura T, Toda N (1994) Mechanism underlying nicotine-induced relaxation in dog saphenous muscle. Eur J Pharmacol 263:85–91

    CAS  PubMed  Google Scholar 

  65. Okamura T, Yoshida K, Toda N (1995) Nitroxidergic innervation in dog and monkey renal arteries. Hypertension 25:1090–1095

    CAS  PubMed  Google Scholar 

  66. Okita W, Ichimura K (1998) Contribution of nitric oxide and sensory transmitters to non-adrenergic, non-cholinergic innervation of nasal blood vessels. Acta Otolaryngol Suppl 539:76–78

    CAS  PubMed  Google Scholar 

  67. Overend J, Wilson WS, Martin W (2005) Biphasic neurogenic vasodilatation in the bovine intraocular long posterior ciliary artery: involvement of nitric oxide and an additional unidentified neurotransmitter. Br J Pharmacol 145:1001–1008

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nat (Lond) 327:524–526

    CAS  Google Scholar 

  69. Palmer RMJ, Rees DD, Ashton DS, Moncada S (1988) L-Arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biophys Biochem Res Commun 153:1251–1256

    CAS  Google Scholar 

  70. Patterson ME, Mullins JJ, Mitchell KD (2008) Reproductive effects of neuronal NOS-derived nitric oxide and cyclooxygenase-2 metabolites in transgenic rats with inducible malignant hypertension. Am J Physiol 294:F205–F211

    CAS  Google Scholar 

  71. Possas OS, Lewis SJ (1997) NO-containing factors mediate hindlimb vasodilation produced by superior laryngeal nerve stimulation. Am J Physiol 273:H234–H243

    CAS  PubMed  Google Scholar 

  72. Rådegran G, Hellsten Y (2000) Adenosine and nitric oxide in exercise-induced human skeletal muscle vasodilatation. Acta Physiol Scand 168:575–591

    PubMed  Google Scholar 

  73. Ratliff B, Rodebaugh J, Sekulic M, Dong KW, Solhaug M (2009) Nitric oxide synthase and renin-angiotensin gene expression and NOS function in the postnatal renal resistance vasculature. Pediatr Nephrol 24:355–365

    PubMed  Google Scholar 

  74. Riederer A, Held B, Mayer B, Wörl J (1999) Histochemical and immunocytochemical study of nitrergic innervation in human nasal mucosa. Ann Otol Rhinol Laryngol 108:869–875

    CAS  PubMed  Google Scholar 

  75. Sastre E, Balfagón G, Revuelta-López E, Aller MA, Nava MP, Arias J, Blanco-Rivero J (2012) Effect of short- and long-term portal hypertension on adrenergic, nitrergic and sensory functioning in rat mesenteric artery. Clin Sci (Lond) 122:337–348

    CAS  Google Scholar 

  76. Savvidou MD, Hingorani AD, Tsikas D, Frölich JC, Vallance P, Nicolaides KH (2003) Endothelial dysfunction and raised plasma concentrations of asymmetric dimethylarginine in pregnant women who subsequently develop pre-eclampsia. Lancet 361:1511–1517

    CAS  PubMed  Google Scholar 

  77. Sawada K, Kondo T, Chang J, Inokuchi T, Aoyagi S (1997) Distribution and neuropeptide content of nitric oxide synthase-containing nerve fibers in arteries and conduction system of the rat. Acta Anat (Basel) 160:239–247

  78. Scott JA, McCormack DG (1999) Nonadrenergic noncholinergic vasodilatation of guinea pig pulmonary arteries is mediated by nitric oxide. Can J Physiol Pharmacol 77:89–95

    CAS  PubMed  Google Scholar 

  79. Seddon M, Melikian N, DworakowskiR SH, Jiang B, Byrne J, Casadei B, Chowienczyk P, Shah AM (2009) Effects of neuronal nitric oxide synthase on human coronary artery diameter and blood flow in vivo. Circulation 119:2656–2662

    CAS  PubMed  Google Scholar 

  80. Seddon MD, Chowieenczyk OL, Brett SE, Cassadei B, Shah AM (2008) Neuronal nitric oxide synthase regulates basal microvascular tone in humans in vivo. Circulation 117:1991–1996

    CAS  PubMed  Google Scholar 

  81. Selly ML (2003) Increased concentrations of homocysteine and asymmetric dimethylarginine and decreased concentrations of nitric oxide in the plasma of patients with Alzheimer’s disease. Neurobiol Aging 24:903–907

    Google Scholar 

  82. Sequeira IM, Haberberger RV, Kummer W (2005) Atrial and ventricular rat coronary arteries are differentially supplied by noradrenergic, cholinergic and nitrergic, but not sensory nerve fibres. Ann Anat 187:345–355

    PubMed  Google Scholar 

  83. Shareef S, Sawada A, Neufeld AH (1999) Isoforms of nitric oxide synthase in the optic nerves of rat eyes with chronic moderately elevated intraocular pressure

  84. Shiraishi S, Okamura T, Kodama M, Toda N (1998) Mechanisms underlying the neurogenic relaxation in dog isolated hepatic arteries. J Cardiovasc Pharmacol 31:372–376

    CAS  PubMed  Google Scholar 

  85. Shiraishi S, Okamura T, Mori A, Toda N (1994) Differences in adrenergic nerve and receptor function in dog internal thoracic, coronary and mesenteric arteries. Jpn J Pharmacol 66:481–488

    CAS  PubMed  Google Scholar 

  86. Stefanovic B, Schwindt W, Hoehn M, Silva AC (2007) Functional uncoupling of hemodynamic from neuronal response by inhibition of neuronal nitric oxide synthase. J Cereb Blood Flow Metab 27:741–754

    CAS  PubMed  Google Scholar 

  87. Tain YL, Hsu CN, Lin CY, Huang LT, Lau YT (2011) Aliskiren prevents hypertension and reduces asymmetric dimethylarginine in young spontaneously hypertensive rats. Eur J Pharmacol 670:561–565

    CAS  PubMed  Google Scholar 

  88. Talman WT, Nitschke Dragon D (2007) Neuronal nitric oxide mediates cerebral vasodilatation during acute hypertension. Brain Res 1139:126–132

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Tanaka T, Ayajiki K, Fujioka H, Toda N, Okamura T (2003) Protection by hypothermia of hypoxia-induced inhibition of neurogenic vasodilation in porcine cerebral arteries. J Pharmacol Sci 92:93–99

    CAS  PubMed  Google Scholar 

  90. Tasatargil A, Sadan G, Ozdem SS (2003) The effects of selective phosphodiesterase III and V inhibitors on adrenergic and non-adrenergic, non-cholinergic relaxation responses of guinea-pig pulmonary arteries. Auton Autacoid Pharmacol 23:117–124

    CAS  PubMed  Google Scholar 

  91. Tatchum-Talom R, Schulz R, McNeill JR, Khadour FH (2000) Upregulation of neuronal nitric oxide synthase in skeletal muscle by swim training. Am J Physiol 279:H1757–H1766

    CAS  Google Scholar 

  92. Toda N (1975) Nicotine-induced relaxations in isolated canine cerebral arteries. J Pharmacol Exp Ther 193:376–384

    CAS  PubMed  Google Scholar 

  93. Toda N (1988) Hemolysate inhibits cerebral artery relaxation. J Cereb Blood Flow Metab 8:46–53

    CAS  PubMed  Google Scholar 

  94. Toda N (1993) Mediation by nitric oxide of neutrally-induced human cerebral artery relaxation. Experientia (Basel) 49:51–53

    CAS  Google Scholar 

  95. Toda N (2012) Age-related changes in endothelial function and blood flow regulation. Pharmacol Ther 133:159–176

    CAS  PubMed  Google Scholar 

  96. Toda N, Ayajiki K, Fujioka H, Okamura T (2001) Ginsenoside potentiates NO-mediated neurogenic vasodilatation of monkey cerebral arteries. J Ethnopharmacol 76:109–113

  97. Toda N, Ayajiki K, Okamura T (1997) Inhibition of nitroxidergic nerve function by neurogenic acetylcholine in monkey cerebral arteries. J Physiol 498:453–461

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Toda N, Ayajiki K, Okamura T (2009) Control of systemic and pulmonary blood pressure by nitric oxide formed through neuronal nitric oxide synthase. J Hypertens 27:1929–1940

    CAS  PubMed  Google Scholar 

  99. Toda N, Ayajiki K, Tanaka T, Okamura T (2000) Preganglionic and postganglionic neurons responsible for cerebral vasodilation mediated by nitric oxide in anesthetized dogs. J Cereb Blood Flow Metab 20:700–708

    CAS  PubMed  Google Scholar 

  100. Toda N, Ayajiki K, Uchiyama A, Okamura T (1997) Nitric oxide-mediated neurogenic vasodilatation in isolated monkey lingual arteries. Am J Physiol 272:H1582–H1588

    CAS  PubMed  Google Scholar 

  101. Toda N, Ayajiki K, Yoshida K, Kimura H, Okamura T (1993) Impairment by damage of the pterygopalatine ganglion of nitroxidergic vasodilator nerve function in canine cerebral and retinal arteries. Circ Res 72:206–213

    CAS  PubMed  Google Scholar 

  102. Toda N, Hayashi S (1982) Responses of canine coronary arteries to transmural electrical stimulation and nicotine. Eur J Pharmacol 80:73–81

    CAS  PubMed  Google Scholar 

  103. Toda N, Kitamura Y, Okamura T (1991) New idea on the mechanism of hypertension: suppression of nitroxidergic vasodilator nerve function. J Vasc Med Biol 3:235–241

    Google Scholar 

  104. Toda N, Kitamura Y, Okamura T (1994) Role of nitroxidergic nerve in dog retinal arterioles in vivo and arteries in vitro. Am J Physiol 266:H1985–H1992

    CAS  PubMed  Google Scholar 

  105. Toda N, Okamura T (1990) Possible role of nitric oxide in transmitting information from vasodilator nerve to cerebroarterial muscle. Biochem Biophys Res Commun 170:308–313

    CAS  PubMed  Google Scholar 

  106. Toda N, Okamura T (1990) Mechanism underlying the response to vasodilator nerve stimulation in isolated dog and monkey cerebral arteries. Am J Physiol 259:H1511–H1517

    CAS  PubMed  Google Scholar 

  107. Toda N, Okamura (2003) The pharmacology of nitric oxide in the peripheral nervous system of blood vessels. Pharmacol Rev 55:271–324

    CAS  PubMed  Google Scholar 

  108. Toda N, Okamura T (2012) Cerebral blood flow regulation by nitric oxide in Alzheimer’s disease. J Alzheimers Dis 32:569–578

    PubMed  Google Scholar 

  109. Toda N, Okamura T (2014) Obesity impairs vasodilatation and blood flow increase mediated by endothelial nitric oxide: an overview. J Clin Pharmacol 53:1228–1239

    Google Scholar 

  110. Toda N, Tanaka T, Ayajiki K, Okamura T (2000) Cerebral vasodilatation induced by stimulation of the pterygopalatine ganglion and greater petrosal nerve in anesthetized monkeys. Neuroscience 96:393–398

    CAS  PubMed  Google Scholar 

  111. Toda N, Toda H (2010) Nitric oxide-mediated blood flow regulation as affected by smoking and nicotine. Eur J Pharmacol 649:1–13

    CAS  PubMed  Google Scholar 

  112. Toda N, Toda M, Ayajiki K, Okamura T (1996) Monkey central retinal artery is innervated by nitroxidergic vasodilator nerves. Invent Ophthalmol Vis Sci 37:2177–2184

    CAS  Google Scholar 

  113. Toda N, Toda H, Okamura T (2013) Regulation of myometrial circulation and uterine vascular tone by constitutive nitric oxide. Eur J Phamacol 714:414–423

    CAS  Google Scholar 

  114. Tojo A, Onozato ML, Fukuda S, Asaba K, Kimura K, Fujita T (2004) Nitric oxide generated by nNOS in the macula densa regulates the afferent arteriolar diameter in rat kidney. Med Electron Microsc 37:236–241

    CAS  PubMed  Google Scholar 

  115. Tong XK, Hamel E (2000) Basal forebrain nitric oxide synthase (NOS)-containing neurons project to microvessels and NOS neurons in the rat neocortex: cellular basis for cortical blood flow regulation. Eur J Neurosci 12:2769–2780

    CAS  PubMed  Google Scholar 

  116. Uchiyama M, Okamura T, Uehara M, Toda N (1997) Analysis of the vasodilator nerve function by nicotine in isolated dog skin artery. Eur J Pharmacol 321:19–25

    CAS  PubMed  Google Scholar 

  117. Van Genechten J, Brouns I, Scheuermann DW, Timmermans JP, Adriaensen D (2003) Reduced number of intrinsic pulmonary nitrergic neurons in Fawn-Hooded rats as compared to control rat strains. Anat Rec Discov Mol Cell Evol Biol 272:446–453

    Google Scholar 

  118. Veerareddy S, Campbell ME, Williams SJ, Baker PN, Davidge ST (2004) Myogenic reactivity is enhanced in rat radial uterine arteries in a model of maternal undernutrition. Am J Obstet Gynecol 191:334–339

    PubMed  Google Scholar 

  119. Walkowska A, Kompanowska-Jezierska E, Sadowski J (2004) Nitric oxide and renal nerves: comparison of effects on renal circulation and sodium excretion in anesthetized rats. Kidney Int 66:705–712

    CAS  PubMed  Google Scholar 

  120. Wang SC, Lin KM, Chien SJ, Huang LT, Hsu CN, Tasin YL (2014) RNA silencing targeting PIN (protein inhibitor of neuronal nitric oxide synthase) attenuates the development of hypertension in young spontaneously hypertensive rats. J Am Soc Hypertens 8:5–13

    CAS  PubMed  Google Scholar 

  121. Wang X, Cupples WA (2009) Brown Norway rats show impaired nNOS-mediated information transfer in renal autoregulation. Can J Physiol Pharmacol 87:29–36

    CAS  PubMed  Google Scholar 

  122. Watanabe H, Tsuru H, Yajin K, Kawamoto H, Sasa M (1998) Cold exposure enhances nitroxidergic nerve-mediated vasodilatation in canine nasal mucosa. Jpn J Pharmacol 77:287–292

  123. Westfall TC, Westfall DP (2011) Chapter 8. Neurotransmission, the autonomic and somatic motor nervous systems. In: Brunton LL, Chabner BA, Knollmann BC (eds) Goodman & Gilman’s the pharmacological basis of therapeutics, 12th edn. McGraw-Hill, New York, pp 171–218

    Google Scholar 

  124. Yoshida K, Okamura T, Kimura H, Bredt DS, Snyder SH, Toda N (1993) Nitric oxide synthase-immunoreactive nerve fibers in dog cerebral and peripheral arteries. Brain Res 629:67–72

    CAS  PubMed  Google Scholar 

  125. Yoshida K, Okamura T, Toda N (1994) Histochemical and functional studies on the nitroxidergic nerve innervating monkey cerebral, mesenteric and temporal arteries. Jpn J Pharmacol 65:351–359

    CAS  PubMed  Google Scholar 

  126. Yoshida T, Ha-Kawa S, Yoshimura M, Nobuhara K, Kinoshita T, Sawada S (2007) Effectiveness of treatment with donepezil hydrochloride and changes in regional cerebral blood flow in patients with Alzheimer’s disease. Ann Nucl Med 21:257–265

    CAS  PubMed  Google Scholar 

  127. Zaccone G, Mauceri A, Lo Cascio P, Minniti F, Parrino V, Farrino V, Fasulo S (2004) Immunohistochemical study of the innervation of pulmonary vessels and smooth muscles in the respiratory tract of two frog species. Acta Histochem 106:179–193

    PubMed  Google Scholar 

  128. Zhang HQ, Fast W, Marletta MA, Martasek P, Silverman RB (1997) Potent selective inhibition of neuronal nitric oxide synthase by NG-propyl-L-arginine. J Med Chem 40:3869–3870

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grant-in-aid for scientific research from the Ministry of Education, Culture, Sport, Science and Technology of Japan (23390055).

Conflict of interest

The authors have no conflict of interest in any matter related to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noboru Toda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toda, N., Okamura, T. Recent advances in research on nitrergic nerve-mediated vasodilatation. Pflugers Arch - Eur J Physiol 467, 1165–1178 (2015). https://doi.org/10.1007/s00424-014-1621-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1621-0

Keywords

Navigation