Skip to main content

Advertisement

Log in

Comparative morphological and molecular studies on the oxygen-chemoreceptive cells in the carotid body and fish gills

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Oxygen-chemoreceptive cells play critical roles for the respiration control. This review summarizes the chemoreceptive cells in the carotid body and fish gills from a morphological and molecular perspective. The cells synthesize and secrete biogenic amines, neuropeptides, and neuroproteins and also express many signaling molecules and transcription factors. In mammals, birds, reptiles, and amphibians, the carotid body primordium is consistently formed in the wall of the third arch artery which gives rise to the common carotid artery and the basal portion of the internal carotid artery. Consequently, the carotid body is located in the carotid bifurcation region, except birds in which the organ is situated at the lateral side of the common carotid artery. The carotid body receives branches of the cranial nerves IX and/or X dependent on the location of the organ. The glomus cell progenitors in mammals and birds are derived from the neighboring ganglion, i.e., the superior cervical sympathetic ganglion and the nodose ganglion, respectively, and immigrate into the carotid body primordium, constituting a solid cell cluster. In other animal species, the glomus cells are dispersed singly or forming small cell groups in intervascular stroma of the carotid body. In fishes, the neuroepithelial cells, corresponding to the glomus cells, are distributed in the gill filaments and lamellae. All oxygen-chemoreceptive cells sensitively respond to acute or chronic hypoxia, exhibiting degranulation, hypertrophy, hyperplasia, and upregulated expression of many genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Modified from Kameda et al. (2008). Bars 110 μm a, c, d, 140 μm b

Fig. 2

Modified from Kameda et al. (2003). b Schematic drawing of the topographical relationships of the carotid body (dark blue), endocrine glands, arteries, and nerves in the chicken cervicothoracic region. Ventral view of the left side. The 14th cervical sympathetic ganglion (5) lies close to the vertebral artery (VA) and issues branches to the artery (arrow). 1 thyroid gland, 2 cranial and caudal parathyroid glands, 3 ultimobranchial gland, 4 distal vagal (nodose) ganglion, CCA common carotid artery, BP brachial plex, R rib, RN recurrent laryngeal nerve, SCA subclavian artery, ST sympathetic trunk, TP transverse process of cervical vertebra, VN vagus nerve. *Common trunk of each artery supplying the endocrine organs. Modified from Kameda (1999). c, d Schematic drawings showing the location and arterial supply of the carotid body (dark blue) on the right c and left d sides. A ventral view. 1 ascending esophageal artery, 2 inferior thyroid artery, 3 carotid body artery, 4 esophagotracheobronchial artery, *Superior thyroid artery, **artery to the sternotracheal muscle, CCA common carotid artery, PT parathyroid glands, SCA subclavian artery, T thyroid gland, UB ultimobranchial gland. Modified from Kameda (1990a)

Fig. 3
Fig. 4

Modified from Kameda et al. (1994). b The carotid body (CB) and glomus cells (allows) distributed in the wall of the common carotid artery (CCA) and around the common trunk (CT) are intensely immunoreactive for TuJ1 in a chick embryo at E14. NG nodose ganglion. Modified from Kameda et al. (1994). c The carotid body from a chicken under normoxia shows many TH-immunoreactive glomus cells. d The carotid body from a chicken exposed to isocapnic hypoxia for 35 days. The volume is markedly increased, blood vessels (VB) are enlarged, and TH-immunoreactive cells are conspicuously decreased. Modified from Kameda et al. (1998). Bars 50 μm a, 80 μm b, 70 μm c, d

Fig. 5

Modified from Kameda et al. (1998). Bars 0.8 μm a, 1 μm b, and 0.7 μm c

Fig. 6

Modified from Kameda (2017)

Similar content being viewed by others

Abbreviations

5-HT:

Serotonin

AT1 receptor:

Angiotensin II type 1 receptor

bFGF:

Basic fibroblast growth factor

BDNF:

Brain-derived neurotrophic factor

CGRP:

Calcitonin gene–related peptide

Cbln1:

Cerebellin 1 precursor

CNTF:

Ciliary neurotrophic factor

Cox4i2:

Cytochrome c oxidase subunit IV isoform 2

CSN:

Carotid sinus nerve

DBH:

Dopamine β-hydroxylase

EGF:

Epidermal growth factor

EGFR:

EGF receptor

ET-1:

Endothelin-1

ETA-R:

Endothelin receptor type A

ETC:

Electron transport chain

Gcm2:

Glial cells missing 2

GDNF:

Glial cell line–derived neurotrophic factor

GFAP:

Glial fibrillary acidic protein

HIF:

Hypoxia-inducible factor

PHD2:

HIF prolyl hydroxylase 2

IGF-1:

Insulin-like growth factor-1

Ndufa4l2:

NADH dehydrogenase (ubiquinone)1 alpha subcomplex 4-like 2

NECs:

Neuroepithelial cells

Olfr:

Olfactory receptor gene

Pcx:

Pyruvate carboxylase

PDGFR-α:

Platelet-derived growth factor receptor-alpha

PGP 9.5.:

Protein gene product 9.5

NPY:

Neuropeptide Y

SCG:

Superior cervical ganglion of sympathetic trunk

SDHD:

Succinate dehydrogenase

SV2:

Synaptic vesicle protein 2

TGF-α:

Transforming growth factor-alpha

TH:

Tyrosine hydroxylase

TuJ1:

Neuron-specific class III β-tubulin isotype

trkB:

Tyrosine receptor kinase B

VEGF:

Vascular endothelial growth factor

VHL:

Von Hippel-Lindau

VIP:

Vasoactive intestinal polypeptide

References

  • Abdel-Magied EM, King AS (1982) Effects of distal vagal ganglionectomy and midcervical vagotomy on the ultrastructure of axonal elements in the carotid body of the domestic fowl. J Anat 134:643–652

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abdel-Magied EM, King AS (1984) Intramural granular cells in the arteries of the carotid body region of the domestic fowl. J Anat 139:483–490

    PubMed  PubMed Central  Google Scholar 

  • Adams WE (1953) The carotid arch in lizards with particular reference to the origin of the internal carotid artery. J Morph 92:115–155

    Article  Google Scholar 

  • Arias-Stella J, Bustos F (1976) Chronic hypoxia and chemodectomas in bovines at high altitudes. Arch Pathol Lab Med 100:636–639

    CAS  PubMed  Google Scholar 

  • Arias-Stella J, Valcarcel J (1976) Chief cell hyperplasia in the human carotid body at high altitudes; physiologic and pathologic significance. Huma Pathol 7:361–373

    Article  CAS  Google Scholar 

  • Atanasova DY, Dandov AD, Dimitrov ND, Lazarov NE (2018) Immunohistochemical localization of angiotensin AT1 receptors in the rat carotid body. Acta Histoch 120:154–158

    Article  CAS  Google Scholar 

  • Banister RJ, Portig PJ, Vogt M (1967) The content and localization of catecholamines in the carotid labyrinths and aortic arches of Rana temporaria. J Physiol 192:529–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biscoe TJ, Stehbens WE (1966) Ultrastructure of the carotid body. J Cell Biol 30:563–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brady R, Zaidi SIA, Mayer C, Katz DM (1999) BDNF is a target-derived survival factor for arterial baroreceptor and chemoafferent primary sensory neurons. J Neurosci 19:2131–2142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butler PJ, Osborne MP (1975) The effect of cervical vagotomy (decentralization) on the ultrastructure of the carotid body of the duck, Anas platyrhynchos. Cell Tissue Res 163:491–502

    Article  CAS  PubMed  Google Scholar 

  • Chang AJ, Ortega FE, Riegler J, Madison DV, Krasnow MA (2015) Oxygen regulation of breathing through an olfactory receptor activated by lactate. Nature 527:240–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen IL, Hansaen JT, Yates RD (1985) Dopamine β-hydroxylase-like immunoreactivity in the rat and cat carotid body: a light and electron microscopic study. J Neurocytol 14:131–144

    Article  CAS  PubMed  Google Scholar 

  • Chen J, He L, Dinger B, Stensaas L, Fidone S (2002) Role of endothelin and endothelin A-type receptor in adaptation of the carotid body to chronic hypoxia. Am J Physiol Lung Cell Mol Physiol 282:L1314–L1323

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Tipoe GL, Liong E, Leung PS, Lam SY et al (2002) Chronic hypoxia enhances endothelin-1-induced intracellular calcium elevation in rat carotid body chemoreceptors and up-regulates ETA receptor expression. Pflügers Arch Eur J Physiol 443:565–573

    Article  CAS  Google Scholar 

  • Coolidge EH, Ciuhandu CS, Milsom WK (2008) A comparative analysis of putative oxygen-sensing cells in the fish gill. J Exper Biol 211:1231–1242

    Article  Google Scholar 

  • Dauger S, Pattyn A, Lofaso F, Gaultier C, Goridis C, Gallego J, Brunet JF (2003) Phox2b controls the development of peripheral chemoreceptors and afferent visceral pathways. Development 130:6635–6642

    Article  CAS  PubMed  Google Scholar 

  • Del Rio R, Munoz C, Arias P, Court FA, Moya EA, Iturriaga R (2011) Chronic intermittent hypoxia-induced vascular enlargement and VEGF upregulation in the rat carotid body is not prevented by antioxidant treatment. Am J Physiol Lung Cell Mol Physiol 301:L702–L711

    Article  PubMed  Google Scholar 

  • Dhillon DP, Barer GR, Walsh M (1984) The enlarged carotid body of the chronically hypoxic and chronically hypoxic and hypercapnic rat: a morphometric analysis. Q J Exp Physiol 69:301–317

    Article  CAS  PubMed  Google Scholar 

  • Dmitrieff EF, Wilson JT, Dunmire KB, Bavis RW (2011) Chronic hyperoxia alters the expression of neurotrophic factors in the carotid body of neonatal rats. Respir Physiol Neurobiol 175:220–227

    Article  CAS  PubMed  Google Scholar 

  • Dunel-Erb S, Bailly Y, Laurent P (1982) Neuroepithelial cells in fish gill primary lamellae. J Appl Physiol 53:1342–1353

    Article  CAS  PubMed  Google Scholar 

  • Edwards C, Heath D, Harris P, Castillo Y, Krüger H, Arias-Stella J (1971) The carotid body in animals at high altitude. J Pathol 104:231–238

    Article  CAS  PubMed  Google Scholar 

  • Erickson JT, Conover JC, Borday V, Champagnat J, Barbacid M, Yancopoulos G, Katz DM (1996) Mice lacking brain-derived neurotrophic factor exhibit visceral sensory neuron losses distinct from mice lacking NT4 and display a severe developmental deficit in control of breathing. J Neurosci 16:5361–5371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erickson JT, Brosenitsch TA, Katz D (2001) Brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor are required simultaneously for survival of dopaminergic primary sensory neurons in vivo. J Neurosci 21:581–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fielding JW, Hodson EJ, Cheng X, Ferguson DJP, Eckardt L et al (2018) PHD2 inactivation in type I cells drives HIF-2α-dependent multilineage hyperplasia and the formation of paraganglioma-like carotid bodies. J Physiol 596:4393–4412

    Article  CAS  PubMed Central  Google Scholar 

  • Gao L, Bonilla-Henao V, García-Flores P, Arias-Mayenco I, Ortega-Sáenz P, López-Barneo J (2017) Gene expression analyses reveal metabolic specifications in acute O2-sensing chemoreceptor cells. J Physiol 595:6091–6120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon J, Bennett AR, Blackburn CC, Manley NR (2001) Gcm2 and Foxn1 mark early parathyroid- and thymus-specific domains in the developing third pharyngeal pouch. Mech Dev 103:141–143

    Article  CAS  PubMed  Google Scholar 

  • Graham A, Richardson J (2012) Developmental and evolutionary origins of the pharyngeal apparatus. EvoDevo 3:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Guillemot F, Lo LC, Johnson JE, Auerbach A, Anderson DJ, Joyner AL (1993) Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75:463–476

    Article  CAS  PubMed  Google Scholar 

  • Haller CJ, Rogers DC (1978) The innervatin and fine structure of paraneuronic cells in an amphibian pulmonary artery. Cell Tissue Res 195:411–423

    Article  CAS  PubMed  Google Scholar 

  • Hendershot J, Liu H, Clouthier DE, Shepherd IT, Coppola E, Studer M, Firulli AB, Pittman DL, Howard MJ (2008) Conditional deletion of Hand2 reveals critical functions in neurogenesis and cell type-specific gene expression or development of neural crest-derived noradrenergic sympathetic ganglion neurons. Dev Biol 319:179–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herzberg T, Fan G, Finley JCW, Erickson JT, Katz DM (1994) BDNF supports mammalian chemoafferent neurons in vitro and following peripheral target removal in vivo. Dev Biol 166:801–811

    Article  Google Scholar 

  • Hess A, Zapata P (1972) Innervation of the cat carotid body: normal and experimental studies. Fed Proceed 31:1365–1382

    CAS  Google Scholar 

  • Heym C, Kummer W (1989) Immunohistochemical distribution and colocalization of regulatory peptides in the carotid body. J Electron Microsc Tech 12:331–342

    Article  CAS  PubMed  Google Scholar 

  • Hockman D, Burns AJ, Schlosser G, Gates KP, Jevans B, et al (2017) Evolution of the hypoxia-sensitive cells involved in amniotete respiratory reflexes. eLIFE 6:e21231

  • Hockman D, Adameyko I, Kaucka M, Barraud P, Otani T, Hunt A, Hartwig AC, Sock E, Waithe D, Franck MCM et al (2018) Striking parallels between carotid body glomus cell and adrenal chromaffin cell development. Dev Biol 444(Suppl 1):S308–S324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogan BM, Hunter MP, Oates AC, Crowhurst MO, Hall NE et al (2004) Zebrafish gcm2 is required for gill filament budding from pharyngeal ectoderm. Dev Biol 276:508–522

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa H (2002) Innervation of the carotid body: immunohistochemical, denervation, and retrograde tracing studies. Micr Res Techn 59:188–195

    Article  CAS  Google Scholar 

  • Ishii K, Oosaki T (1969) Fine structure of the chemoreceptor cell in the amphibian carotid labyrinth. J Anat 104:263–280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Izal-Azcárate A, Belzunegui S, San Sebastián W, Garrido-Gil P, Vázquez-Claverie M et al (2008) Immunohistochemical characterization of the rat carotid body. Respir Physiol Neurobiol 161:95–99

    Article  PubMed  Google Scholar 

  • Jonz MG, Nurse CA (2003) Neuroepithelial cells and associated innervation of the zebrafish gill: a confocal immunofluorescence study. J Comp Neurol 461:1–17

    Article  PubMed  Google Scholar 

  • Jonz MG, Fearon IM, Nurse CA (2004) Neuroepithelial oxygen chemoreceptors of the zebrafish gill. J Physiol 560:737–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kageyama R, Ohtsuka T (1999) The Notch-Hes pathway in mammalian neural development. Cell Res 9:79–188

    Article  Google Scholar 

  • Kameda Y (1990a) Distribution of serotonin-immunoreactive cells around arteries arising from the common carotid artery in the chicken. Anat Rec 227:87–96

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y (1990b) Innervation of the serotonin-immunoreactive cells distributed in the wall of the common carotid artery and its branches in the chicken. J Comp Neurol 292:537–550

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y (1990c) Ontogeny of the carotid body and glomus cells distributed in the wall of the common carotid artery and its branches in the chicken. Cell Tissue Res 261:525–537

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y (1994) Electron microscopic study on the development of the carotid body and glomus cell groups distributed in the wall of the common carotid artery and it branches in the chicken. J Comp Neurol 348:544–555

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y (1996) Immunoelectron microscopic localization of vimentin in sustentacular cells of the carotid body and the adrenal medulla from guinea pigs. J Histochem Cytochem 44:1439–1449

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y (1998) Substance P- and CGRP-immunoreactive fibers in the chicken carotid bodies after nodose ganglionectomy and midcervical vagotomy. Brain Res 807:246–249

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y (1999) VIP-, galanin-, and neuropeptide Y-immunoreactive fibers in the chicken carotid bodies after various types of denervation. Cell Tissue Res 298:437–447

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y (2002) Carotid body and glomus cells distributed in the wall of the common carotid artery in the bird. Micr Res Techn 59:196–206

    Article  Google Scholar 

  • Kameda Y (2005) Mash1 is required for glomus cell formation in the mouse carotid body. Dev Biol 283:128–139

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y (2014) Signaling molecules and transcription factors involved in the development of the sympathetic nervous system, with special emphasis on the superior cervical ganglion. Cell Tissue Res 357:527–548

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y (2017) Morphological and molecular evolution of the ultimobranchial gland of nonmammalian vertebrates, with special reference to the chicken C cells. Dev Dyn 246:719–739

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y (2020) Molecular and cellular mechanisms of the organogenesis and development of the mammalian carotid body. Dev Dyn 249:592–609

    Article  PubMed  Google Scholar 

  • Kameda Y, Okamoto K, Ito M, Tagawa T (1988) Innervation of the C cells of chicken ultimobranchial glands studied by immunohistochemistry, fluorescence microscopy, and electron microscopy. Am J Anat 182:353–368

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y, Amano T, Tagawa T (1990) Distribution and ontogeny of chromogranin A and tyrosine hydroxylase in the carotid body and glomus cells located in the wall of the common carotid artery and its branches in the chicken. Histochemistry 94:609–616

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y, Yamatsu Y, Kameya T, Frankfurter A (1994) Glomus cell differentiation in the carotid body region of chick embryos studied by neuron-specific class III β-tubulin isotype and Leu-7 monoclonal antibodies. J Comp Neurol 348:531–543

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y, Miura M, Hayashida Y (1998) Different effects of prolonged isocapnic hypoxia on the carotid body and the glomus cells in the wall of the common carotid artery of the chicken. Brain Res 805:191–206

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y, Nishimaki T, Takeichi MO, Chisaka O (2002) Homeobox gene Hoxa3 is essential for the formation of the carotid body in the mouse embryos. Dev Biol 247:197–209

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y, Watari-Goshima N, Nishimaki T, Chisaka O (2003) Disruption of the Hoxa3 homeobox gene results in anomalies of the carotid artery system and the arterial baroreceptors. Cell Tissue Res 311:343–352

    Article  PubMed  Google Scholar 

  • Kameda Y, Ito M, Nishimaki T, Gotoh N (2008) FRS2α2F/2F mice lack carotid body and exhibit abnormalities of the superior cervical sympathetic ganglion and carotid sinus nerve. Dev Biol 314:236–247

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y, Saitoh T, Nemoto N, Katoh T, Iseki S (2012) Hes1 is required for the development of the superior cervical ganglion of sympathetic trunk and the carotid body. Dev Dyn 241:1289–1300

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y, Saitoh T, Nemoto N, Katoh T, Iseki S, Fujimura T (2013) Hes1 is required for the development of pharyngeal organs and survival of neural crest-derived mesenchymal cells in pharyngeal arches. Cell Tissue Res 353:9–25

    Article  CAS  PubMed  Google Scholar 

  • Katz DM, Black IB (1986) Expression and regulation of catecholaminergic traits in primary sensory neurons: relationship to target innervation in vivo. J Neurosci 6:983–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi S (1971a) Comparative cytological studies of the carotid body 1.Demonstration of monoamine-storing cells by correlated chromaffin reaction and fluorescence histochemistry. Arch histol jap 33:319–333

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S (1971b) Comparative cytological studies of the carotid body 2.Ultrastructure of the synapses on the chief cells. Arch histol jap 33:397–420

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S, Uchida T, Ohashi T, Fujita T, Nakao K et al (1983) Immunocytochemical demonstration of the co-storage of noradrenaline with met-enkephalin-arg6-phe7 and met-enkephalin-arg6-gly7-leu8 in the carotid body chief cells of the dog. Arch histol jap 46:713–722

    Article  CAS  PubMed  Google Scholar 

  • Kummer W (1988) Retrograde neuronal labelling and double-staining immunohistochemistry of tachykinin- and calcitonin gene-related peptide-immunoreactive pathways in the carotid sinus nerve of the guinea pig. J Auton Nerv Syst 23:131–141

    Article  CAS  PubMed  Google Scholar 

  • Kusakabe T (1992) Intimate apposition of the glomus cells and smooth muscle cells (g-s connection) in the carotid labyrinth of juvenile bullfrogs. Anat Embryol 185:39–44

    Article  CAS  Google Scholar 

  • Kusakabe T (2002) Carotid labyrinth of amphibians. Micr Res Techn 59:207–226

    Article  Google Scholar 

  • Kusakabe T, Ishii K, Ishii K (1988) Dense granule-containing cells in arterial chemoreceptor areas of the tortoise (Testudo hermanni). J Morphol 197:183–191

    Article  CAS  PubMed  Google Scholar 

  • Kusakabe T, Powell FL, Ellisman MH (1993) Ultrastructure of the glomus cells in the carotid body of chronically hypoxic rats: with special reference to the similarity of amphibian glomus cells. Anat Rec 237:220–227

    Article  CAS  PubMed  Google Scholar 

  • Kusakabe T, Hayashida Y, Matsuda H, Gono Y, Powell FL et al (1998) Hypoxic adaptation of the peptidergic innervation in the rat carotid body. Brain Res 806:165–174

    Article  CAS  PubMed  Google Scholar 

  • Lam SY, Tipoe GL, Fung ML (2008) Differential expressions and roles of hypoxia-inducible factor-1alpha, -2alpha and -3alpha in the rat carotid body during chronic and intermittent hypoxia. Histol Histopathol 23:271–280

    CAS  PubMed  Google Scholar 

  • Lam SY, Liu Y, Ng KM, Liong EC, Tipoe GL et al (2014) Upregulation of a local renin-angiotensin system in the rat carotid body during chronic intermittent hypoxia. Exp Physiol 99:220–231

    Article  CAS  PubMed  Google Scholar 

  • Leitner ML, Wang LH, Osborne PA, Golden JP, Milbrandt J, Johnson EM Jr (2005) Expression and function of GDNF family ligands and receptors in the carotid body. Exper Neurol 191:S68–S79

    Article  CAS  Google Scholar 

  • Leung PS, Lam SY, Fung ML (2000) Chronic hypoxia upregulates the expression and function of AT1 receptor in rat carotid body. J Endocr 167:517–524

    Article  CAS  PubMed  Google Scholar 

  • Li YL, Xia XH, Zheng H, Gao L, L YF, et al (2006) Angiotensin II enhances carotid body chemoreflex control of sympathetic outflow in chronic heart failure rabbits. Cardiovasc Res 71:129–138

    Article  CAS  PubMed  Google Scholar 

  • Macias D, Fernández-Agüera MC, Bonilla-Henao V, López-Barneo J (2014) Deletion of the von Hippel-Lindau gene causes sympathoadrenal cell death and impairs chemoreceptor-mediated adaptation to hypoxia. EMBO Mol Med 6:1577–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macias D, Cowburin AS, Torres-Torrelo H, Ortega-Saenz P, Lopez-Barneo J, Johnson RS (2018) HIF-2α is essential for carotid body development and function. eLife 7: e34681

  • McDonald DM, Mitchell RA (1975) The innervation of glomus cells, ganglion cells and blood vessels in the rat carotid body: a quantitative ultrastructural analysis. J Neurocytol 4:177–230

    Article  Google Scholar 

  • McGregor KH, Gil J, Lahiri S (1984) A morphometric study of the carotid body in chronically hypoxic rats. J Appl Physiol Respir Environ Exerc Physiol 57:1430–1438

    CAS  PubMed  Google Scholar 

  • Milsom WK, Burleson ML (2007) Peripheral arterial chemoreceptors and the evolution of the carotid body. Respir Physiol Neurobiol 157:4–11

    Article  CAS  PubMed  Google Scholar 

  • Mongera A, Singh AP, Levesque MP, Chen YY, Konstantinidis P, Nüsslein-Volhard C (2013) Genetic lineage labeling in zebrafish uncovers novel neural crest contributions to the head, including gill pillar cells. Development 140:916–925

    Article  CAS  PubMed  Google Scholar 

  • Morikawa Y, D’Autreaux F, Gershon MD, Cserjesi P (2007) Hand2 determines the noradrenergic phenotype in the mouse sympathetic nervous system. Dev Biol 307:114–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishi K, Stensaas LJ (1974) The ultrastructure and source of nerve endings in the carotid body. Cell Tissue Res 154:303–319

    Article  CAS  PubMed  Google Scholar 

  • Noguchi R, Kobayashi S (1977) On the vascular architecture of the carotid labyrinth in Cynops pyrrhogaster and Onychodactylus japonicus. Arch Histol Jpn 40:347–360

    Article  CAS  PubMed  Google Scholar 

  • Okabe O, Graham A (2004) The origin of the parathyroid gland. Proc Natl Acad Sci 101:17716–17719

    Article  CAS  PubMed  Google Scholar 

  • Oomori Y, Murabayashi H, Ishikawa K, Miyakawa K, Nakaya K, Tanaka H (2002) Neuropeptide Y- and catecholamine-synthesizing enzymes: immunoreactivities in the rat carotid body during postnatal development. Anat Embryol 206:37–47

    Article  CAS  Google Scholar 

  • Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF (1999) The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 399:366–370

    Article  CAS  PubMed  Google Scholar 

  • Pattyn A, Guillemot F, Brunet JF (2000) Specification of the central noradrenergic phenotype by the homeobox gene Phox2b. Mol Cell Neurosci 15:235–243

    Article  CAS  PubMed  Google Scholar 

  • Pawar A, Nanduri J, Yuan G, Khan S, Wang N, Kumar GK, Prabhakar NR (2009) Reactive oxygen species-dependent endothelin signaling is required for augmented hypoxic sensory response of the neonatal carotid body by intermittent hypoxia. Am J Physiol Regul Integr Comp Physiol 296:R735–R742

    Article  CAS  PubMed  Google Scholar 

  • Peng YJ, Nanduri J, Raghuraman G, Wang N, Kumar GK, Prabhakar NR (2013) Role of oxidative stress-induced endothelin-converting enzyme activity in the alteration of carotid body function by chronic intermittent hypoxia. Exp Physiol 98:1620–1630

    Article  CAS  PubMed  Google Scholar 

  • Peng YJ, Gridina A, Wang B, Nanduri J, Fox AP, Prabhakar NR (2020) Olfactory receptor 78 participates in carotid body response to a wide range of low O2 levels but not severe hypoxia. J Neurophysiol 123:1886–1895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Platero-Luengo A, González-Granero S, Durán R, Díaz-Castro B, Piruat JI et al (2014) An O2-sensitive glomus cell-stem cell synapse induces carotid body growth in chronic hypoxia. Cell 156:291–303

    Article  CAS  PubMed  Google Scholar 

  • Porzionato A, Macchi V, Stecco C, De Caro R (2019) The carotid sinus nerve-structure, function, and clinical implications. Anat Rec 302:575–587

    Article  Google Scholar 

  • Potzner MR, Tsarovina K, Binder E, Penzo-Méndez A, Lefebvre V, Rohrer H, Wegner M, Sock E (2010) Sequential requirement of Sox4 and Sox11 during development of the sympathetic nervous system. Development 137:775–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poullet M (1977) A study of nerve endings in the carotid labyrinth of the toad (Bufo bufo) after degeneration. Biol Cellulaire 28:75–80

    Google Scholar 

  • Reyes C, Fong AY, Brink DL, Milson WK (2014) Distribution and innervation of putative arterial chemoreceptors in Bullfrog (Rana catesbeiana). J Comp Neurol 522:3754–3774

    Article  CAS  PubMed  Google Scholar 

  • Rogers DC (1967) The structure of the carotid bifurcation in the lizards Tiliqua occipitalis and Trachysaurus rugosus. J Morph 122:115–130

    Article  CAS  PubMed  Google Scholar 

  • Roux JC, Brismar H, Aperia A, Lagercrantz H (2005) Developmental changes in HIF transcription factor in carotid body: relevance for O2 sensing by chemoreceptors. Pediatric Res 58:53–57

    Article  CAS  Google Scholar 

  • Saltys HA, Jonz MG, Nurse CA (2006) Comparative study of gill neuroepithelial cells and their innervation in teleosts and Xenopus tadpoles. Cell Tissue Res 323:1–10

    Article  PubMed  Google Scholar 

  • Shone V, Oulion S, Casane D, Laurenti P, Graham A (2016) Mode of reduction in the number of pharyngeal segments within the sarcopterygians. Zool Lett 2:6

    Article  Google Scholar 

  • Tian H, Hammer RE, Matsumoto AM, Russell DW, McKnight SL (1998) The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev 12:3320–3324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tipoe GL, Fung ML (2003) Expression of HIF-1α, VEGF and VEGF receptors in the carotid body of chronically hypoxic rat. Resp Physiol Neurobiol 138:143–154

    Article  CAS  Google Scholar 

  • Torres-Torrelo H, Ortega-Sáenz P, Macias D, Omura M, Zhou T et al (2018) The role of Olfr78 in the breathing circuit of mice. Nature 561:E33–E40

    Article  CAS  PubMed  Google Scholar 

  • Van Bueren KL, Papangeli I, Rochais F, Pearce K, Robert C, Calmont A, Szumska D, Kelly RG, Bhattacharya S, Scambler PJ (2010) Hes1 expression is reduced in Tbx1 null cells and is required for the development of structures affected in 22q11 deletion syndrome. Dev Biol 340:369–380

    Article  PubMed  PubMed Central  Google Scholar 

  • Verna A (1979) Ultrastructure of the carotid body in the mammals. Intern Rev Cytol 60:271–330

    Article  CAS  Google Scholar 

  • Waldo KL, Lo CW, Kirby ML (1999) Connexin 43 expression reflects neural crest patterns during cardiovascular development. Dev Biol 208:307–323

    Article  CAS  PubMed  Google Scholar 

  • Wang ZY, Bisgard GE (2005) Postnatal growth of the carotid body. Respir Physiol Neurobiol 149:181–190

    Article  PubMed  Google Scholar 

  • Wharton J, Polak JM, Pearse AGE, McGregor GP, Bryant MG et al (1980) Enkephalin-, VIP- and substance P-like immunoreactivity in the carotid body. Nature 284:269–271

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto M, Kondo H, Nagatsu I (1989) Immunohistochemical demonstration of tyrosine hydroxylase, serotonin and neuropeptide tyrosine in the epitheloid cells within arterial walls and carotid bodies of chicks. J Anat 167:137–146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou T, Chien MS, Kaleem S, Matsunami H (2016) Single cell transcriptome analysis of mouse carotid body glomus cells. J Physiol 594:4225–4251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoko Kameda.

Ethics declarations

Ethical approval

All animal procedures were approved by the Animal Use and Care Committee of Kitasato University School of Medicine and conformed to NIH guidelines. This article does not contain any studies with human participants.

Conflict of interest

The author declares that she has no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kameda, Y. Comparative morphological and molecular studies on the oxygen-chemoreceptive cells in the carotid body and fish gills. Cell Tissue Res 384, 255–273 (2021). https://doi.org/10.1007/s00441-021-03421-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-021-03421-y

Keywords

Navigation