Skip to main content

Germ Cell Transplantation and Neospermatogenesis

  • Chapter
  • First Online:
The Complete Guide to Male Fertility Preservation

Abstract

Spermatogonial stem cells (SSCs) are testis-specific stem cells, which are the foundation of spermatogenesis and male fertility. Transplanting germ cells including SSCs into the testis of an infertile recipient results in donor-derived spermatogenesis. Germ cell transplantation (GCT) is used to assay SSC activity and to quantify the SSC population. GCT also has the potential to treat infertility caused by cytotoxic treatment of juvenile patients for cancer or other cases of azoospermia. Transplanted SSCs move towards the basal compartment of the seminiferous tubule to colonize, and subsequently undergo mitosis and meiosis to generate sperm. The culture system for germ-line stem (GS) cells is well established for mice and rats, but it still remains challenging to produce complete spermatogenesis from GS cells in vitro. Testicular organ culture systems and emerging pluripotent stem cell technology are expected to provide in vitro spermatogenesis in the future. Successful GCT has been reported in many animal species and autologously in humans, though most xenogenic GCT led to incomplete spermatogenesis. Testicular tissue xenografting provides an alternative to GCT, in which grafted testicular tissue grows and produces xenogenic sperm in a mouse host. Testicular tissue xenografting is not only valuable for fertility preservation but also useful to investigate testicular growth and the regulatory system of spermatogenesis and to evaluate the toxicity of chemical substances and drugs on spermatogenesis. Genetic manipulation of germ cells followed by subsequent transplantation can be applied to basic biological study, animal transgenesis, and potentially gene modification therapy though this still remains controversial. Overall, GCT and testis tissue xenografting, in combination with testicular tissue banking, are expected to provide valuable options for fertility preservation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krausz C. Male infertility: pathogenesis and clinical diagnosis. Best Pract Res Clin Endocrinol Metab. 2011;25(2):271–85.

    Article  PubMed  Google Scholar 

  2. Palermo GD, Neri QV, Takeuchi T, Rosenwaks Z. ICSI: where we have been and whdingere we are going. Semin Reprod Med. 2009;27(2):191–201.

    Article  PubMed  Google Scholar 

  3. Meistrich ML. Effects of chemotherapy and radiotherapy on spermatogenesis in humans. Fertil Steril. 2013;100(5):1180–6.

    Article  CAS  PubMed  Google Scholar 

  4. Brinster RL, Zimmermann JW. Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci U S A. 1994;91(24):11298–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. de Rooij DG, Russell LD. All you wanted to know about spermatogonia but were afraid to ask. J Androl. 2000;21(6):776–98.

    PubMed  Google Scholar 

  6. Brinster RL, Avarbock MR. Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci U S A. 1994;91(24):11303–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Oatley JM, Brinster RL. The germline stem cell niche unit in mammalian testes. Physiol Rev. 2012;92(2):577–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Meng X, Lindahl M, Hyvonen ME, Parvinen M, de Rooij DG, Hess MW, et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science. 2000;287(5457):1489–93.

    Article  CAS  PubMed  Google Scholar 

  9. Goriely A, McVean GA, van Pelt AM, O’Rourke AW, Wall SA, de Rooij DG, et al. Gain-of-function amino acid substitutions drive positive selection of FGFR2 mutations in human spermatogonia. Proc Natl Acad Sci U S A. 2005;102(17):6051–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Takashima S, Kanatsu-Shinohara M, Tanaka T, Morimoto H, Inoue K, Ogonuki N, et al. Functional differences between GDNF-dependent and FGF2-dependent mouse spermatogonial stem cell self-renewal. Stem Cell Rep. 2015;4(3):489–502.

    Article  CAS  Google Scholar 

  11. Uchida A, Kishi K, Aiyama Y, Miura K, Takase HM, Suzuki H, et al. In vivo dynamics of GFRalpha1-positive spermatogonia stimulated by GDNF signals using a bead transplantation assay. Biochem Biophys Res Commun. 2016;476(4):546–52.

    Article  CAS  PubMed  Google Scholar 

  12. Pellegrini M, Grimaldi P, Rossi P, Geremia R, Dolci S. Developmental expression of BMP4/ALK3/SMAD5 signaling pathway in the mouse testis: a potential role of BMP4 in spermatogonia differentiation. J Cell Sci. 2003;116(Pt 16):3363–72.

    Article  CAS  PubMed  Google Scholar 

  13. Mithraprabhu S, Mendis S, Meachem SJ, Tubino L, Matzuk MM, Brown CW, et al. Activin bioactivity affects germ cell differentiation in the postnatal mouse testis in vivo. Biol Reprod. 2010;82(5):980–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gely-Pernot A, Raverdeau M, Celebi C, Dennefeld C, Feret B, Klopfenstein M, et al. Spermatogonia differentiation requires retinoic acid receptor gamma. Endocrinology. 2012;153(1):438–49.

    Article  CAS  PubMed  Google Scholar 

  15. Morrison SJ, Spradling AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell. 2008;132(4):598–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Spradling A, Fuller MT, Braun RE, Yoshida S. Germline stem cells. Cold Spring Harb Perspect Biol. 2011;3(11):a002642.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Yoshida S, Sukeno M, Nabeshima Y. A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis. Science. 2007;317(5845):1722–6.

    Article  CAS  PubMed  Google Scholar 

  18. Aiyama Y, Tsunekawa N, Kishi K, Kawasumi M, Suzuki H, Kanai-Azuma M, et al. A niche for GFRalpha1-positive Spermatogonia in the terminal segments of the seminiferous tubules in hamster testes. Stem Cells. 2015;33(9):2811–24.

    Article  CAS  PubMed  Google Scholar 

  19. Ogawa T, Arechaga JM, Avarbock MR, Brinster RL. Transplantation of testis germinal cells into mouse seminiferous tubules. Int J Dev Biol. 1997;41(1):111–22.

    CAS  PubMed  Google Scholar 

  20. Honaramooz A, Megee SO, Dobrinski I. Germ cell transplantation in pigs. Biol Reprod. 2002;66(1):21–8.

    Article  CAS  PubMed  Google Scholar 

  21. Honaramooz A, Behboodi E, Megee SO, Overton SA, Galantino-Homer H, Echelard Y, et al. Fertility and germline transmission of donor haplotype following germ cell transplantation in immunocompetent goats. Biol Reprod. 2003;69(4):1260–4.

    Article  CAS  PubMed  Google Scholar 

  22. Ogawa T, Dobrinski I, Avarbock MR, Brinster RL. Transplantation of male germ line stem cells restores fertility in infertile mice. Nat Med. 2000;6(1):29–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shinohara T, Brinster RL. Enrichment and transplantation of spermatogonial stem cells. Int J Androl. 2000;23(Suppl 2):89–91.

    Article  PubMed  Google Scholar 

  24. Schlatt S, Kim SS, Gosden R. Spermatogenesis and steroidogenesis in mouse, hamster and monkey testicular tissue after cryopreservation and heterotopic grafting to castrated hosts. Reproduction. 2002;124(3):339–46.

    Article  CAS  PubMed  Google Scholar 

  25. Izadyar F, Den Ouden K, Stout TA, Stout J, Coret J, Lankveld DP, et al. Autologous and homologous transplantation of bovine spermatogonial stem cells. Reproduction. 2003;126(6):765–74.

    Article  CAS  PubMed  Google Scholar 

  26. Kim Y, Selvaraj V, Dobrinski I, Lee H, McEntee MC, Travis AJ. Recipient preparation and mixed germ cell isolation for spermatogonial stem cell transplantation in domestic cats. J Androl. 2006;27(2):248–56.

    Article  PubMed  Google Scholar 

  27. Kim Y, Turner D, Nelson J, Dobrinski I, McEntee M, Travis AJ. Production of donor-derived sperm after spermatogonial stem cell transplantation in the dog. Reproduction. 2008;136(6):823–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Herrid M, Vignarajan S, Davey R, Dobrinski I, Hill JR. Successful transplantation of bovine testicular cells to heterologous recipients. Reproduction. 2006;132(4):617–24.

    Article  CAS  PubMed  Google Scholar 

  29. Hermann BP, Sukhwani M, Winkler F, Pascarella JN, Peters KA, Sheng Y, et al. Spermatogonial stem cell transplantation into rhesus testes regenerates spermatogenesis producing functional sperm. Cell Stem Cell. 2012;11(5):715–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jahnukainen K, Ehmcke J, Quader MA, Saiful Huq M, Epperly MW, Hergenrother S, et al. Testicular recovery after irradiation differs in prepubertal and pubertal non-human primates, and can be enhanced by autologous germ cell transplantation. Hum Reprod. 2011;26(8):1945–54.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zeng W, Tang L, Bondareva A, Luo J, Megee SO, Modelski M, et al. Non-viral transfection of goat germline stem cells by nucleofection results in production of transgenic sperm after germ cell transplantation. Mol Reprod Dev. 2012;79(4):255–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zheng Y, Tian X, Zhang Y, Qin J, An J, Zeng W. In vitro propagation of male germline stem cells from piglets. J Assist Reprod Genet. 2013;30(7):945–52.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Radford J. Restoration of fertility after treatment for cancer. Horm Res. 2003;59(Suppl 1):21–3.

    CAS  PubMed  Google Scholar 

  34. Clouthier DE, Avarbock MR, Maika SD, Hammer RE, Brinster RL. Rat spermatogenesis in mouse testis. Nature. 1996;381(6581):418–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ogawa T, Dobrinski I, Avarbock MR, Brinster RL. Xenogeneic spermatogenesis following transplantation of hamster germ cells to mouse testes. Biol Reprod. 1999;60(2):515–21.

    Article  CAS  PubMed  Google Scholar 

  36. Dobrinski I, Avarbock MR, Brinster RL. Transplantation of germ cells from rabbits and dogs into mouse testes. Biol Reprod. 1999;61(5):1331–9.

    Article  CAS  PubMed  Google Scholar 

  37. Nagano M, McCarrey JR, Brinster RL. Primate spermatogonial stem cells colonize mouse testes. Biol Reprod. 2001;64(5):1409–16.

    Article  CAS  PubMed  Google Scholar 

  38. Oatley JM, de Avila DM, McLean DJ, Griswold MD, Reeves JJ. Transplantation of bovine germinal cells into mouse testes. J Anim Sci. 2002;80(7):1925–31.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang X, Ebata KT, Nagano MC. Genetic analysis of the clonal origin of regenerating mouse spermatogenesis following transplantation. Biol Reprod. 2003;69(6):1872–8.

    Article  CAS  PubMed  Google Scholar 

  40. Kanatsu-Shinohara M, Inoue K, Miki H, Ogonuki N, Takehashi M, Morimoto T, et al. Clonal origin of germ cell colonies after spermatogonial transplantation in mice. Biol Reprod. 2006;75(1):68–74.

    Article  CAS  PubMed  Google Scholar 

  41. Nagano MC. Homing efficiency and proliferation kinetics of male germ line stem cells following transplantation in mice. Biol Reprod. 2003;69(2):701–7.

    Article  CAS  PubMed  Google Scholar 

  42. Nagano M, Avarbock MR, Brinster RL. Pattern and kinetics of mouse donor spermatogonial stem cell colonization in recipient testes. Biol Reprod. 1999;60(6):1429–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Takashima S, Kanatsu-Shinohara M, Tanaka T, Takehashi M, Morimoto H, Shinohara T. Rac mediates mouse spermatogonial stem cell homing to germline niches by regulating transmigration through the blood-testis barrier. Cell Stem Cell. 2011;9(5):463–75.

    Article  CAS  PubMed  Google Scholar 

  44. Kanatsu-Shinohara M, Inoue K, Takashima S, Takehashi M, Ogonuki N, Morimoto H, et al. Reconstitution of mouse spermatogonial stem cell niches in culture. Cell Stem Cell. 2012;11(4):567–78.

    Article  CAS  PubMed  Google Scholar 

  45. Yang QE, Kim D, Kaucher A, Oatley MJ, Oatley JM. CXCL12-CXCR4 signaling is required for the maintenance of mouse spermatogonial stem cells. J Cell Sci. 2013;126(Pt 4):1009–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kanatsu-Shinohara M, Takehashi M, Takashima S, Lee J, Morimoto H, Chuma S, et al. Homing of mouse spermatogonial stem cells to germline niche depends on beta1-integrin. Cell Stem Cell. 2008;3(5):533–42.

    Article  CAS  PubMed  Google Scholar 

  47. Niu Z, Goodyear SM, Avarbock MR, Brinster RL. Chemokine (C-X-C) ligand 12 facilitates trafficking of donor Spermatogonial stem cells. Stem Cells Int. 2016;2016:5796305.

    PubMed  PubMed Central  Google Scholar 

  48. Parreira GG, Ogawa T, Avarbock MR, Franca LR, Brinster RL, Russell LD. Development of germ cell transplants in mice. Biol Reprod. 1998;59(6):1360–70.

    Article  CAS  PubMed  Google Scholar 

  49. Ohta H, Yomogida K, Yamada S, Okabe M, Nishimune Y. Real-time observation of transplanted ‘green germ cells’: proliferation and differentiation of stem cells. Develop Growth Differ. 2000;42(2):105–12.

    Article  CAS  Google Scholar 

  50. Kanatsu-Shinohara M, Ogonuki N, Inoue K, Miki H, Ogura A, Toyokuni S, et al. Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol Reprod. 2003;69(2):612–6.

    Article  CAS  PubMed  Google Scholar 

  51. Kubota H, Avarbock MR, Brinster RL. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci U S A. 2004;101(47):16489–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kanatsu-Shinohara M, Miki H, Inoue K, Ogonuki N, Toyokuni S, Ogura A, et al. Long-term culture of mouse male germline stem cells under serum-or feeder-free conditions. Biol Reprod. 2005;72(4):985–91.

    Article  CAS  PubMed  Google Scholar 

  53. Kanatsu-Shinohara M, Inoue K, Ogonuki N, Morimoto H, Ogura A, Shinohara T. Serum- and feeder-free culture of mouse germline stem cells. Biol Reprod. 2011;84(1):97–105.

    Article  CAS  PubMed  Google Scholar 

  54. Ryu BY, Kubota H, Avarbock MR, Brinster RL. Conservation of spermatogonial stem cell self-renewal signaling between mouse and rat. Proc Natl Acad Sci U S A. 2005;102(40):14302–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hamra FK, Chapman KM, Nguyen DM, Williams-Stephens AA, Hammer RE, Garbers DL. Self renewal, expansion, and transfection of rat spermatogonial stem cells in culture. Proc Natl Acad Sci U S A. 2005;102(48):17430–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kanatsu-Shinohara M, Muneto T, Lee J, Takenaka M, Chuma S, Nakatsuji N, et al. Long-term culture of male germline stem cells from hamster testes. Biol Reprod. 2008;78(4):611–7.

    Article  CAS  PubMed  Google Scholar 

  57. Kubota H, Wu X, Goodyear SM, Avarbock MR, Brinster RL. Glial cell line-derived neurotrophic factor and endothelial cells promote self-renewal of rabbit germ cells with spermatogonial stem cell properties. FASEB J. 2011;25(8):2604–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Luo J, Megee S, Rathi R, Dobrinski I. Protein gene product 9.5 is a spermatogonia-specific marker in the pig testis: application to enrichment and culture of porcine spermatogonia. Mol Reprod Dev. 2006;73(12):1531–40.

    Article  CAS  PubMed  Google Scholar 

  59. Kuijk EW, Colenbrander B, Roelen BA. The effects of growth factors on in vitro-cultured porcine testicular cells. Reproduction. 2009;138(4):721–31.

    Article  CAS  PubMed  Google Scholar 

  60. Eildermann K, Gromoll J, Behr R. Misleading and reliable markers to differentiate between primate testis-derived multipotent stromal cells and spermatogonia in culture. Hum Reprod. 2012;27(6):1754–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Langenstroth D, Kossack N, Westernstroer B, Wistuba J, Behr R, Gromoll J, et al. Separation of somatic and germ cells is required to establish primate spermatogonial cultures. Hum Reprod. 2014;29(9):2018–31.

    Article  PubMed  Google Scholar 

  62. Sadri-Ardekani H, Mizrak SC, van Daalen SK, Korver CM, Roepers-Gajadien HL, Koruji M, et al. Propagation of human spermatogonial stem cells in vitro. JAMA. 2009;302(19):2127–34.

    Article  CAS  PubMed  Google Scholar 

  63. He Z, Kokkinaki M, Jiang J, Dobrinski I, Dym M. Isolation, characterization, and culture of human spermatogonia. Biol Reprod. 2010;82(2):363–72.

    Article  CAS  PubMed  Google Scholar 

  64. Sato T, Katagiri K, Gohbara A, Inoue K, Ogonuki N, Ogura A, et al. In vitro production of functional sperm in cultured neonatal mouse testes. Nature. 2011;471(7339):504–7.

    Article  CAS  PubMed  Google Scholar 

  65. Komeya M, Kimura H, Nakamura H, Yokonishi T, Sato T, Kojima K, et al. Long-term ex vivo maintenance of testis tissues producing fertile sperm in a microfluidic device. Sci Rep. 2016;6:21472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sato T, Katagiri K, Kojima K, Komeya M, Yao M, Ogawa T. In vitro spermatogenesis in explanted adult mouse testis tissues. PLoS One. 2015;10(6):e0130171.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell. 2011;146(4):519–32.

    Article  CAS  PubMed  Google Scholar 

  68. Nakaki F, Hayashi K, Ohta H, Kurimoto K, Yabuta Y, Saitou M. Induction of mouse germ-cell fate by transcription factors in vitro. Nature. 2013;501(7466):222–6.

    Article  CAS  PubMed  Google Scholar 

  69. Honaramooz A, Snedaker A, Boiani M, Scholer H, Dobrinski I, Schlatt S. Sperm from neonatal mammalian testes grafted in mice. Nature. 2002;418(6899):778–81.

    Article  CAS  PubMed  Google Scholar 

  70. Nakai M, Kaneko H, Somfai T, Maedomari N, Ozawa M, Noguchi J, et al. Production of viable piglets for the first time using sperm derived from ectopic testicular xenografts. Reproduction. 2010;139(2):331–5.

    Article  CAS  PubMed  Google Scholar 

  71. Kaneko H, Kikuchi K, Tanihara F, Noguchi J, Nakai M, Ito J, et al. Normal reproductive development of pigs produced using sperm retrieved from immature testicular tissue cryopreserved and grafted into nude mice. Theriogenology. 2014;82(2):325–31.

    Article  PubMed  Google Scholar 

  72. Schlatt S, Westernstroer B, Gassei K, Ehmcke J. Donor-host involvement in immature rat testis xenografting into nude mouse hosts. Biol Reprod. 2010;82(5):888–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Arregui L, Dobrinski I. Xenografting of testicular tissue pieces: 12 years of an in vivo spermatogenesis system. Reproduction. 2014;148(5):R71–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. van den Driesche S, Macdonald J, Anderson RA, Johnston ZC, Chetty T, Smith LB, et al. Prolonged exposure to acetaminophen reduces testosterone production by the human fetal testis in a xenograft model. Sci Transl Med. 2015;7(288):288ra80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Rodriguez-Sosa JR, Bondareva A, Tang L, Avelar GF, Coyle KM, Modelski M, et al. Phthalate esters affect maturation and function of primate testis tissue ectopically grafted in mice. Mol Cell Endocrinol. 2014;398(1–2):89–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wyns C, Van Langendonckt A, Wese FX, Donnez J, Curaba M. Long-term spermatogonial survival in cryopreserved and xenografted immature human testicular tissue. Hum Reprod. 2008;23(11):2402–14.

    Article  PubMed  Google Scholar 

  77. Sato Y, Nozawa S, Yoshiike M, Arai M, Sasaki C, Iwamoto T. Xenografting of testicular tissue from an infant human donor results in accelerated testicular maturation. Hum Reprod. 2010;25(5):1113–22.

    Article  CAS  PubMed  Google Scholar 

  78. Schlatt S, Honaramooz A, Ehmcke J, Goebell PJ, Rubben H, Dhir R, et al. Limited survival of adult human testicular tissue as ectopic xenograft. Hum Reprod. 2006;21(2):384–9.

    Article  CAS  PubMed  Google Scholar 

  79. Geens M, De Block G, Goossens E, Frederickx V, Van Steirteghem A, Tournaye H. Spermatogonial survival after grafting human testicular tissue to immunodeficient mice. Hum Reprod. 2006;21(2):390–6.

    Article  PubMed  Google Scholar 

  80. Wyns C, Curaba M, Martinez-Madrid B, Van Langendonckt A, Francois-Xavier W, Donnez J. Spermatogonial survival after cryopreservation and short-term orthotopic immature human cryptorchid testicular tissue grafting to immunodeficient mice. Hum Reprod. 2007;22(6):1603–11.

    Article  PubMed  Google Scholar 

  81. Turner RM, Rathi R, Honaramooz A, Zeng W, Dobrinski I. Xenografting restores spermatogenesis to cryptorchid testicular tissue but does not rescue the phenotype of idiopathic testicular degeneration in the horse (Equus Caballus). Reprod Fertil Dev. 2010;22(4):673–83.

    Article  PubMed  Google Scholar 

  82. Nagano M, Shinohara T, Avarbock MR, Brinster RL. Retrovirus-mediated gene delivery into male germ line stem cells. FEBS Lett. 2000;475(1):7–10.

    Article  CAS  PubMed  Google Scholar 

  83. Nagano M, Watson DJ, Ryu BY, Wolfe JH, Brinster RL. Lentiviral vector transduction of male germ line stem cells in mice. FEBS Lett. 2002;524(1–3):111–5.

    Article  CAS  PubMed  Google Scholar 

  84. Hamra FK, Gatlin J, Chapman KM, Grellhesl DM, Garcia JV, Hammer RE, et al. Production of transgenic rats by lentiviral transduction of male germ-line stem cells. Proc Natl Acad Sci U S A. 2002;99(23):14931–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ryu BY, Orwig KE, Oatley JM, Lin CC, Chang LJ, Avarbock MR, et al. Efficient generation of transgenic rats through the male germline using lentiviral transduction and transplantation of spermatogonial stem cells. J Androl. 2007;28(2):353–60.

    Article  CAS  PubMed  Google Scholar 

  86. Honaramooz A, Megee S, Zeng W, Destrempes MM, Overton SA, Luo J, et al. Adeno-associated virus (AAV)-mediated transduction of male germ line stem cells results in transgene transmission after germ cell transplantation. FASEB J. 2008;22(2):374–82.

    Article  CAS  PubMed  Google Scholar 

  87. Harkey MA, Asano A, Zoulas ME, Torok-Storb B, Nagashima J, Travis A. Isolation, genetic manipulation, and transplantation of canine spermatogonial stem cells: progress toward transgenesis through the male germ-line. Reproduction. 2013;146(1):75–90.

    Article  CAS  PubMed  Google Scholar 

  88. Zeng W, Tang L, Bondareva A, Honaramooz A, Tanco V, Dores C, et al. Viral transduction of male germline stem cells results in transgene transmission after germ cell transplantation in pigs. Biol Reprod. 2013;88(1):27.

    Article  PubMed  CAS  Google Scholar 

  89. Kim KJ, Cho CM, Kim BG, Lee YA, Kim BJ, Kim YH, et al. Lentiviral modification of enriched populations of bovine male gonocytes. J Anim Sci. 2014;92(1):106–18.

    Article  CAS  PubMed  Google Scholar 

  90. Gama Sosa MA, De Gasperi R, Elder GA. Animal transgenesis: an overview. Brain Struct Funct. 2010;214(2–3):91–109.

    Article  CAS  PubMed  Google Scholar 

  91. Piedrahita JA, Olby N. Perspectives on transgenic livestock in agriculture and biomedicine: an update. Reprod Fertil Dev. 2011;23(1):56–63.

    Article  PubMed  Google Scholar 

  92. Bacci ML. A brief overview of transgenic farm animals. Vet Res Commun. 2007;31(Suppl 1):9–14.

    Article  PubMed  Google Scholar 

  93. Dinnyes A, Tian XC, Yang X. Epigenetic regulation of foetal development in nuclear transfer animal models. Reprod Domest Anim. 2008;43(Suppl 2):302–9.

    Article  PubMed  Google Scholar 

  94. Nieschlag E. Klinefelter syndrome: the commonest form of hypogonadism, but often overlooked or untreated. Dtsch Arztebl Int. 2013;110(20):347–53.

    PubMed  PubMed Central  Google Scholar 

  95. Agarwal A, Allamaneni SS. Disruption of spermatogenesis by the cancer disease process. J Natl Cancer Inst Monogr. 2005;34:9–12.

    Article  Google Scholar 

  96. Wyns C, Curaba M, Vanabelle B, Van Langendonckt A, Donnez J. Options for fertility preservation in prepubertal boys. Hum Reprod Update. 2010;16(3):312–28.

    Article  PubMed  Google Scholar 

  97. Wu X, Goodyear SM, Abramowitz LK, Bartolomei MS, Tobias JW, Avarbock MR, et al. Fertile offspring derived from mouse spermatogonial stem cells cryopreserved for more than 14 years. Hum Reprod. 2012;27(5):1249–59.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Geens M, Goossens E, De Block G, Ning L, Van Saen D, Tournaye H. Autologous spermatogonial stem cell transplantation in man: current obstacles for a future clinical application. Hum Reprod Update. 2008;14(2):121–30.

    Article  PubMed  Google Scholar 

  99. Fujita K, Ohta H, Tsujimura A, Takao T, Miyagawa Y, Takada S, et al. Transplantation of spermatogonial stem cells isolated from leukemic mice restores fertility without inducing leukemia. J Clin Invest. 2005;115(7):1855–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fujita K, Tsujimura A, Miyagawa Y, Kiuchi H, Matsuoka Y, Takao T, et al. Isolation of germ cells from leukemia and lymphoma cells in a human in vitro model: potential clinical application for restoring human fertility after anticancer therapy. Cancer Res. 2006;66(23):11166–71.

    Article  CAS  PubMed  Google Scholar 

  101. Dovey SL, Valli H, Hermann BP, Sukhwani M, Donohue J, Castro CA, et al. Eliminating malignant contamination from therapeutic human spermatogonial stem cells. J Clin Invest. 2013;123(4):1833–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Meije Y, Tonjes RR, Fishman JA. Retroviral restriction factors and infectious risk in xenotransplantation. Am J Transplant. 2010;10(7):1511–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ina Dobrinski DMV, MVSc, PhD, Dipl. ACT .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Uchida, A., Dobrinski, I. (2018). Germ Cell Transplantation and Neospermatogenesis. In: Majzoub, A., Agarwal, A. (eds) The Complete Guide to Male Fertility Preservation. Springer, Cham. https://doi.org/10.1007/978-3-319-42396-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42396-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42395-1

  • Online ISBN: 978-3-319-42396-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics