Skip to main content

Advertisement

Log in

Role of stem cell factor in the placental niche

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Stem cell factor (SCF) is a cytokine found in hematopoietic stem cells (HSCs) and causes proliferation and differentiation of cells by binding to its receptor (c-kit). It is produced in the yolk sac, fetal liver and bone marrow during the development of the fetus and, together with its signaling pathway, plays an important role in the development of these cells. The placenta, an important hematopoiesis site before the entry of cells into the liver, is rich in HSCs, with definitive hematopoiesis in a variety of HSC types and embryonic stem cells. Chorionic-plate-derived mesenchymal stem cells (CP-MSCs) isolated from the placenta show stem cell markers such as CD41 and cause the self-renewal of cells under hypoxic conditions. In contrast, hypoxia can result in apoptosis and autophagy via oxidative stress in stem cells. As a hypoxia-induced factor, SCF causes a balance between cell survival and death by autophagy in CP-MSCs. Stromal cells and MSCs have a crucial function in the development of HSCs in the placenta via SCF expression in the placental vascular niche. Defects in hematopoietic growth factors (such as SCF and its signaling pathways) lead to impaired hematopoiesis, resulting in fetal death and abortion. Therefore, an awareness of the role of the SCF/c-kit pathway in the survival, apoptosis and development of stem cells can significantly contribute to the exploration of stem cell production pathways during the embryonic period and in malignancies and in the further generation of these cells to facilitate therapeutic approaches. In this review, we discuss the role of SCF in the placental niche.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alvarez-Silva M, Belo-Diabangouaya P, Salaün J, Dieterlen-Lièvre F (2003) Mouse placenta is a major hematopoietic organ. Development 130:5437–5444

    Article  CAS  PubMed  Google Scholar 

  • Ankrum J, Karp JM (2010) Mesenchymal stem cell therapy: two steps forward, one step back. Trends Mol Med 16:203–209

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashman LK (1999) The biology of stem cell factor and its receptor C-kit. Int J Biochem Cell Biol 31:1037–1051

    Article  CAS  PubMed  Google Scholar 

  • Bashamboo A, Taylor AH, Samuel K, Panthier J-J, Whetton AD, Forrester LM (2006) The survival of differentiating embryonic stem cells is dependent on the SCF-KIT pathway. J Cell Sci 119:3039–3046

    Article  CAS  PubMed  Google Scholar 

  • Broudy VC (1997) Stem cell factor and hematopoiesis. Blood 90:1345–1364

    CAS  PubMed  Google Scholar 

  • Carson WE, Haldar S, Baiocchi RA, Croce CM, Caligiuri MA (1994) The c-kit ligand suppresses apoptosis of human natural killer cells through the upregulation of bcl-2. Proc Natl Acad Sci 91:7553–7557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castrechini N, Murthi P, Gude N, Erwich J, Gronthos S, Zannettino A, Kalionis B (2010) Mesenchymal stem cells in human placental chorionic villi reside in a vascular niche. Placenta 31:203–212

    Article  CAS  PubMed  Google Scholar 

  • Chhabra A, Lechner AJ, Ueno M, Acharya A, Van Handel B, Wang Y, Mikkola HK (2012) Trophoblasts regulate the placental hematopoietic niche through PDGF-B signaling. Dev Cell 22:651–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbel C, Vaigot P, Salaun J (2005) Alpha IIb integrin, a novel marker for hemopoietic progenitor cells. Int J Dev Biol 49:279–284

    Article  CAS  PubMed  Google Scholar 

  • Crisan M, Yap S, Casteilla L, Chen C-W, Corselli M, Park TS, Zhang L (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    Article  CAS  PubMed  Google Scholar 

  • Cross J, Baczyk D, Dobric N, Hemberger M, Hughes M, Simmons D, Kingdom J (2003) Genes, development and evolution of the placenta. Placenta 24:123–130

    Article  CAS  PubMed  Google Scholar 

  • Cumano A, Dieterlen-Lievre F, Godin I (1996) Lymphoid potential, probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura. Cell 86:907–916

    Article  CAS  PubMed  Google Scholar 

  • Danet GH, Pan Y, Luongo JL, Bonnet DA, Simon MC (2003) Expansion of human SCID-repopulating cells under hypoxic conditions. J Clin Invest 112:126–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Bruijn MF, Ma X, Robin C, Ottersbach K, Sanchez M-J, Dzierzak E (2002) Hematopoietic stem cells localize to the endothelial cell layer in the midgestation mouse aorta. Immunity 16:673–683

    Article  PubMed  Google Scholar 

  • Diaz-Flores L, Gutierrez R, Lopez-Alonso A, Gonzalez R, Varela H (1992) Pericytes as a supplementary source of osteoblasts in periosteal osteogenesis. Clin Orthop Relat Res 275:280–286

    Google Scholar 

  • Ding L, Saunders TL, Enikolopov G, Morrison SJ (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481:457–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolci S, Williams DE, Ernst MK, Resnick JL, Brannan CI, Lock LF, Donovan PJ (1991) Requirement for mast cell growth factor for primordial germ cell survival in culture. Nature 352:809–811

    Article  CAS  PubMed  Google Scholar 

  • Downs K (2002) Early placental ontogeny in the mouse. Placenta 23:116–131

    Article  CAS  PubMed  Google Scholar 

  • Downs KM, Gardner RL (1995) An investigation into early placental ontogeny: allantoic attachment to the chorion is selective and developmentally regulated. Development 121:407–416

    CAS  PubMed  Google Scholar 

  • Dubreuil P, Forrester L, Rottapel R, Reedijk M, Fujita J, Bernstein A (1991) The c-fms gene complements the mitogenic defect in mast cells derived from mutant W mice but not mi (microphthalmia) mice. Proc Natl Acad Sci U S A 88:2341–2345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dvorak AM, Seder RA, Paul WE, Morgan ES, Galli SJ (1994) Effects of interleukin-3 with or without the c-kit ligand, stem cell factor, on the survival and cytlopasmic granule formation of mouse basophils and mast cells in vitro. Am J Pathol 144:160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dzierza KE, Speck NA (2008) Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat Immunol 9:129–136

    Article  Google Scholar 

  • Eliasson P, Jönsson JI (2010) The hematopoietic stem cell niche: low in oxygen but a nice place to be. J Cell Physiol 222:17–22

    Article  CAS  PubMed  Google Scholar 

  • Elmasri H, Ghelfi E, Yu C-w, Traphagen S, Cernadas M, Cao H, Hotamisligil G (2012) Endothelial cell-fatty acid binding protein 4 promotes angiogenesis: role of stem cell factor/c-kit pathway. Angiogenesis 15:457–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezashi T, Das P, Roberts RM (2005) Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci U S A 102:4783–4788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferkowicz MJ, Yoder MC (2005) Blood island formation: longstanding observations and modern interpretations. Exp Hematol 33:1041–1047

    Article  PubMed  Google Scholar 

  • Ferkowicz MJ, Starr M, Xie X, Li W, Johnson SA, Shelley WC, Yoder MC (2003) CD41 expression defines the onset of primitive and definitive hematopoiesis in the murine embryo. Development 130:4393–4403

    Article  CAS  PubMed  Google Scholar 

  • Gekas C, Dieterlen-Lièvre F, Orkin SH, Mikkola HK (2005) The placenta is a niche for hematopoietic stem cells. Dev Cell 8:365–375

    Article  CAS  PubMed  Google Scholar 

  • Gordon-Keylock S, Sobiesiak M, Rybtsov S, Moore K, Medvinsky A (2013) Mouse extraembryonic arterial vessels harbor precursors capable of maturing into definitive HSCs. Blood 122:2338–2345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green DR, Kroemer G (2005) Pharmacological manipulation of cell death: clinical applications in sight? J Clin Invest 115:2610–2617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gustafsson ÅB, Gottlieb RA (2008) Eat your heart out: role of autophagy in myocardial ischemia/reperfusion. Autophagy 4:416–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han Z-B, Ren H, Zhao H, Chi Y, Chen K, Zhou B, Liu B (2008) Hypoxia-inducible factor (HIF)-1α directly enhances the transcriptional activity of stem cell factor (SCF) in response to hypoxia and epidermal growth factor (EGF). Carcinogenesis 29:1853–1861

    Article  CAS  PubMed  Google Scholar 

  • Huber TL, Kouskoff V, Fehling HJ, Palis J, Keller G (2004) Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature 432:625–630

    Article  CAS  PubMed  Google Scholar 

  • Ji L, Liu YX, Yang C, Yue W, Shi SS, Bai CX, Pei XT (2009) Self-renewal and pluripotency is maintained in human embryonic stem cells by co-culture with human fetal liver stromal cells expressing hypoxia inducible factor 1α. J Cell Physiol 221:54–66

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Shin KS, Jeon JH, Lee DR, Shim SH, Kim JK, Kim GJ (2011) Human chorionic-plate-derived mesenchymal stem cells and Wharton’s jelly-derived mesenchymal stem cells: a comparative analysis of their potential as placenta-derived stem cells. Cell Tissue Res 346:53–64

    Article  PubMed  Google Scholar 

  • Kissel H, Timokhina I, Hardy MP, Rothschild G, Tajima Y, Soares V, Besmer P (2000) Point mutation in kit receptor tyrosine kinase reveals essential roles for kit signaling in spermatogenesis and oogenesis without affecting other kit responses. EMBO J 19:1312–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumaravelu P, Hook L, Morrison AM, Ure J, Zhao S, Zuyev S, Medvinsky A (2002) Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development 129:4891–4899

    CAS  PubMed  Google Scholar 

  • Lee Y, Jung J, Cho KJ, Lee SK, Park JW, Oh IH, Kim GJ (2013) Increased SCF/c-kit by hypoxia promotes autophagy of human placental chorionic plate-derived mesenchymal stem cells via regulating the phosphorylation of mTOR. J Cell Biochem 114:79–88

    Article  CAS  PubMed  Google Scholar 

  • Lennartsson J, Rönnstrand L (2012) Stem cell factor receptor/c-Kit: from basic science to clinical implications. Physiol Rev 92:1619–1649

    Article  CAS  PubMed  Google Scholar 

  • Majmundar AJ, Wong WJ, Simon MC (2010) Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 40:294–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsui J, Wakabayashi T, Asada M, Yoshimatsu K, Okada M (2004) Stem cell factor/c-kit signaling promotes the survival, migration, and capillary tube formation of human umbilical vein endothelial cells. J Biol Chem 279:18600–18607

    Article  CAS  PubMed  Google Scholar 

  • Miao Z, Jin J, Chen L, Zhu J, Huang W, Zhao J, Zhang X (2006) Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell Biol Int 30:681–687

    Article  CAS  PubMed  Google Scholar 

  • Mikkola HK, Fujiwara Y, Schlaeger TM, Traver D, Orkin SH (2003) Expression of CD41 marks the initiation of definitive hematopoiesis in the mouse embryo. Blood 101:508–516

    Article  CAS  PubMed  Google Scholar 

  • Mikkola HK, Gekas C, Orkin SH, Dieterlen-Lievre F (2005) Placenta as a site for hematopoietic stem cell development. Exp Hematol 33:1048–1054

    Article  CAS  PubMed  Google Scholar 

  • Mitjavila-Garcia MT, Cailleret M, Godin I, Nogueira MM, Cohen-Solal K, Schiavon V, Vainchenker W (2002) Expression of CD41 on hematopoietic progenitors derived from embryonic hematopoietic cells. Development 129:2003–2013

    CAS  PubMed  Google Scholar 

  • Mohyeldin A, Garzón-Muvdi T, Quiñones-Hinojosa A (2010) Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 7:150–161

    Article  CAS  PubMed  Google Scholar 

  • Nekanti U, Dastidar S, Venugopal P, Totey S, Ta M (2010) Increased proliferation and analysis of differential gene expression in human Wharton’s jelly-derived mesenchymal stromal cells under hypoxia. Int J Biol Sci 6:499–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orr-Urtreger A, Avivi A, Zimmer Y, Givol D, Yarden Y, Lonai P (1990) Developmental expression of c-kit, a proto-oncogene encoded by the W locus. Development 109:911–923

    CAS  PubMed  Google Scholar 

  • Osawa M, Hanada K-I, Hamada H, Nakauchi H (1996) Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273:242–245

    Article  CAS  PubMed  Google Scholar 

  • Ottersbach K, Dzierzak E (2005) The murine placenta contains hematopoietic stem cells within the vascular labyrinth region. Dev Cell 8:377–387

    Article  CAS  PubMed  Google Scholar 

  • Palacios R, Nishikawa SL (1992) Developmentally regulated cell surface expression and function of c-kit receptor during lymphocyte ontogeny in the embryo and adult mice. Development 115:1133–1147

    CAS  PubMed  Google Scholar 

  • Palmqvist L, Glover CH, Hsu L, Lu M, Bossen B, Piret JM, Helgason CD (2005) Correlation of murine embryonic stem cell gene expression profiles with functional measures of pluripotency. Stem Cells 23:663–680

    Article  CAS  PubMed  Google Scholar 

  • Raynaud CM, Butler JM, Halabi NM, Ahmad FS, Ahmed B, Rafii S, Rafii A (2013) Endothelial cells provide a niche for placental hematopoietic stem/progenitor cell expansion through broad transcriptomic modification. Stem Cell Res 11:1074–1090

    Article  CAS  PubMed  Google Scholar 

  • Rhodes KE, Gekas C, Wang Y, Lux CT, Francis CS, Chan DN, Mikkola HK (2008) The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation. Cell Stem Cell 2:252–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robin C, Ottersbach K, Durand C, Peeters M, Vanes L, Tybulewicz V, Dzierzak E (2006) An unexpected role for IL-3 in the embryonic development of hematopoietic stem cells. Dev Cell 11:171–180

    Article  CAS  PubMed  Google Scholar 

  • Robin C, Bollerot K, Mendes S, Haak E, Crisan M, Cerisoli F, Vermeulen M (2009) Human placenta is a potent hematopoietic niche containing hematopoietic stem and progenitor cells throughout development. Cell Stem Cell 5:385–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossant J, Cross JC (2001) Placental development: lessons from mouse mutants. Nat Rev Genet 2:538–548

    Article  CAS  PubMed  Google Scholar 

  • Rybtsov S, Sobiesiak M, Taoudi S, Souilhol C, Senserrich J, Liakhovitskaia A, Medvinsky A (2011) Hierarchical organization and early hematopoietic specification of the developing HSC lineage in the AGM region. J Exp Med 208:1305–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rybtsov S, Batsivari A, Bilotkach K, Paruzina D, Senserrich J, Nerushev O, Medvinsky A (2014) Tracing the origin of the HSC hierarchy reveals an SCF-dependent, IL-3-independent CD43− embryonic precursor. Stem cell Rep 3:489–501

    Article  CAS  Google Scholar 

  • Sasaki T, Mizuochi C, Horio Y, Nakao K, Akashi K, Sugiyama D (2010) Regulation of hematopoietic cell clusters in the placental niche through SCF/Kit signaling in embryonic mouse. Development 137:3941–3952

    Article  CAS  PubMed  Google Scholar 

  • Shi S, Gronthos S (2003) Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 18:696–704

    Article  PubMed  Google Scholar 

  • Sugiyama D, Tsuji K (2006) Definitive hematopoiesis from endothelial cells in the mouse embryo; a simple guide. Trends Cardiovasc Med 16:45–49

    Article  CAS  PubMed  Google Scholar 

  • Tanaka S, Kunath T, Hadjantonakis A-K, Nagy A, Rossant J (1998) Promotion of trophoblast stem cell proliferation by FGF4. Science 282:2072–2075

    Article  CAS  PubMed  Google Scholar 

  • Taoudi S, Gonneau C, Moore K, Sheridan JM, Blackburn CC, Taylor E, Medvinsky A (2008) Extensive hematopoietic stem cell generation in the AGM region via maturation of VE-cadherin+ CD45+ pre-definitive HSCs. Cell Stem Cell 3:99–108

    Article  CAS  PubMed  Google Scholar 

  • Williams DE, Eisenman J, Baird A, Rauch C, Van Ness K, March CJ, Boswell HS (1990) Identification of a ligand for the c-kit proto-oncogene. Cell 63:167–174

    Article  CAS  PubMed  Google Scholar 

  • Zannettino A, Paton S, Arthur A, Khor F, Itescu S, Gimble J, Gronthos S (2008) Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J Cell Physiol 214:413–421

    Article  CAS  PubMed  Google Scholar 

  • Zovein AC, Iruela-Arispe ML (2009) Time to cut the cord: placental HSCs grow up. Cell Stem Cell 5:351–352

    Article  CAS  PubMed  Google Scholar 

  • Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We wish to thank all our colleagues at Shafa Hospital and Allied Health Sciences School, Ahvaz Jundishapur University of Medical Sciences.

Authors’ contributions

N.S. conceived the manuscript and revised it; E.K, S.A. and M.Sh. wrote the manuscript; N.S. and E.K. prepared the table and figure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najmaldin Saki.

Ethics declarations

Conflict of interest

None

Additional information

Highlights We review the placenta niche structure in comparison with the BM niche.

We discuss the role of SCF in the embryo with a focus on the placental niche.

We introduce the SCF signaling and placental niche for better detection of hematopoietic pathways and malignancies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodadi, E., Shahrabi, S., Shahjahani, M. et al. Role of stem cell factor in the placental niche. Cell Tissue Res 366, 523–531 (2016). https://doi.org/10.1007/s00441-016-2429-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-016-2429-3

Keywords

Navigation