Skip to main content

Advertisement

Log in

Pannexin-1 expression in developing mouse nervous system: new evidence for expression in sensory ganglia

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Pannexin1 (Panx1) is one of three members of the pannexin protein family. The expression of Panx1 mRNA has been extensively investigated from late embryonic to adult stages. In contrast, expression during early embryonic development is largely unknown. Our aim is to examine the temporal and spatial expression of Panx1 in mouse embryonic development by focusing on embryonic days (E) 9.5 to 12.5. Whole embryos are investigated in order to provide a comprehensive survey. Analyses were performed at the mRNA level by using reverse transcription plus the polymerase chain reaction and whole-mount in situ hybridization. Panx1 mRNA was detected in the heads and bodies of embryos at all developmental stages investigated (E9.5, E10.5, E11.5, E12.5). In particular, the nervous system expressed Panx1 at an early time point. Interestingly, Panx1 expression was found in afferent ganglia of the cranial nerves and spinal cord. This finding is of particular interest in the context of neuropathic pain and other Panx1-related neurological disorders. Our study shows, for the first time, that Panx1 is expressed in the central and peripheral nervous system during early developmental stages. The consequences of Panx1 deficiency or inhibition in a number of experimental paradigms might therefore be predicated on changes during early development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ambrosi C, Gassmann O, Pranskevich JN, Boassa D, Smock A, Wang J, Dahl G, Steinem C, Sosinsky GE (2010) Pannexin1 and Pannexin2 channels show quaternary similarities to connexons and different oligomerization numbers from each other. J Biol Chem 285:24420–24431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anselmi F, Hernandez VH, Crispino G, Seydel A, Ortolano S, Roper SD, Kessaris N, Richardson W, Rickheit G, Filippov MA, Monyer H, Mammano F (2008) ATP release through connexin hemichannels and gap junction transfer of second messengers propagate Ca2+ signals across the inner ear. Proc Natl Acad Sci U S A 105:18770–18775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arber S (2012) Motor circuits in action: specification, connectivity, and function. Neuron 74:975–989

    Article  CAS  PubMed  Google Scholar 

  • Avendano BC, Montero TD, Chavez CE, von Bernhardi R, Orellana JA (2015) Prenatal exposure to inflammatory conditions increases Cx43 and Panx1 unopposed channel opening and activation of astrocytes in the offspring effect on neuronal survival. Glia (in press)

  • Baranova A, Ivanov D, Petrash N, Pestova A, Skoblov M, Kelmanson I, Shagin D, Nazarenko S, Geraymovych E, Litvin O, Tiunova A, Born TL, Usman N, Staroverov D, Lukyanov S, Panchin Y (2004) The mammalian pannexin family is homologous to the invertebrate innexin gap junction proteins. Genomics 83:706–716

    Article  CAS  PubMed  Google Scholar 

  • Bargiotas P, Krenz A, Hormuzdi SG, Ridder DA, Herb A, Barakat W, Penuela S, Engelhardt J von, Monyer H, Schwaninger M (2011) Pannexins in ischemia-induced neurodegeneration. Proc Natl Acad Sci U S A 108:20772–20777

  • Basson MA, Wingate RJ (2013) Congenital hypoplasia of the cerebellum: developmental causes and behavioural consequences. Front Neuroanat 7:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Bravo D, Ibarra P, Retamal J, Pelissier T, Laurido C, Hernandez A, Constandil L (2014) Pannexin 1: a novel participant in neuropathic pain signaling in the rat spinal cord. Pain 155:2108-2115

    Article  CAS  PubMed  Google Scholar 

  • Bruzzone R, Hormuzdi SG, Barbe MT, Herb A, Monyer H (2003) Pannexins, a family of gap junction proteins expressed in brain. Proc Natl Acad Sci U S A 100:13644–13649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casanova JC, Uribe V, Badia-Careaga C, Giovinazzo G, Torres M, Sanz-Ezquerro JJ (2011) Apical ectodermal ridge morphogenesis in limb development is controlled by Arid3b-mediated regulation of cell movements. Development 138:1195–1205

    Article  CAS  PubMed  Google Scholar 

  • Celetti SJ, Cowan KN, Penuela S, Shao Q, Churko J, Laird DW (2010) Implications of pannexin 1 and pannexin 3 for keratinocyte differentiation. J Cell Sci 123:1363–1372

    Article  CAS  PubMed  Google Scholar 

  • Chang Q, Gonzalez M, Pinter MJ, Balice-Gordon RJ (1999) Gap junctional coupling and patterns of connexin expression among neonatal rat lumbar spinal motor neurons. J Neurosci 19:10813–10828

    CAS  PubMed  Google Scholar 

  • Chen J, Zhu Y, Liang C, Chen J, Zhao HB (2015) Pannexin1 channels dominate ATP release in the cochlea ensuring endocochlear potential and auditory receptor potential generation and hearing. Sci Rep 5:10762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cisneros-Mejorado A, Gottlieb M, Cavaliere F, Magnus T, Koch-Nolte F, Scemes E, Perez-Samartin A, Matute C (2015) Blockade of P2X7 receptors or pannexin-1 channels similarly attenuates postischemic damage. J Cereb Blood Flow Metab 35:843–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cone AC, Ambrosi C, Scemes E, Martone ME, Sosinsky G (2013) A comparative antibody analysis of Pannexin1 expression in four rat brain regions reveals varying subcellular localizations. Front Pharmacol 4:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordes SP (2001) Molecular genetics of cranial nerve development in mouse. Nat Rev Neurosci 2:611–623

    Article  CAS  PubMed  Google Scholar 

  • Dahl E, Willecke K, Balling R (1997) Segment-specific expression of the gap junction gene connexin31 during hindbrain development. Dev Gene Evol 207:359–361

    Article  CAS  Google Scholar 

  • De Bellard ME, Ching W, Gossler A, Bronner-Fraser M (2002) Disruption of segmental neural crest migration and ephrin expression in delta-1 null mice. Dev Biol 249:121–130

    Article  PubMed  Google Scholar 

  • Hanstein R, Negoro H, Patel NK, Charollais A, Meda P, Spray DC, Suadicani SO, Scemes E (2013) Promises and pitfalls of a Pannexin1 transgenic mouse line. Front Pharmacol 4:61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartfield EM, Rinaldi F, Glover CP, Wong LF, Caldwell MA, Uney JB (2011) Connexin 36 expression regulates neuronal differentiation from neural progenitor cells. PLoS One 6:e14746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkes R (2012) Pattern formation during development of the embryonic cerebellum. Front Neuroanat 6:10

    PubMed  PubMed Central  Google Scholar 

  • Iacopetti P, Michelini M, Stuckmann I, Oback B, Aaku-Saraste E, Huttner WB (1999) Expression of the antiproliferative gene TIS21 at the onset of neurogenesis identifies single neuroepithelial cells that switch from proliferative to neuron-generating division. Proc Natl Acad Sci U S A 96:4639–4644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jungbluth S, Willecke K, Champagnat J (2002) Segment-specific expression of connexin31 in the embryonic hindbrain is regulated by Krox20. Dev Dyn 223:544–551

    Article  CAS  PubMed  Google Scholar 

  • Karatas H, Erdener SE, Gursoy-Ozdemir Y, Lule S, Eren-Kocak E, Sen ZD, Dalkara T (2013) Spreading depression triggers headache by activating neuronal Panx1 channels. Science 339:1092–1095

    Article  CAS  PubMed  Google Scholar 

  • Kaufman MH (2003) The atlas of mouse development. Academic Press, New York

    Google Scholar 

  • Langlois S, Xiang X, Young K, Cowan BJ, Penuela S, Cowan KN (2014)Pannexin 1 and pannexin 3 channels regulate skeletal muscle myoblast proliferation and differentiation.J Biol Chem 289:30717-30731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mannelli LD, Marcoli M, Micheli L, Zanardelli M, Maura G, Ghelardini C, Cervetto C (2015) Oxaliplatin evokes P2X7-dependent glutamate release in the cerebral cortex: a pain mechanism mediated by Pannexin 1. Neuropharmacology 97:133–141

    Article  Google Scholar 

  • Martinez S, Andreu A, Mecklenburg N, Echevarria D (2013) Cellular and molecular basis of cerebellar development. Front Neuroanat 7:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Namba K, Sugihara I, Hashimoto M (2011) Close correlation between the birth date of Purkinje cells and the longitudinal compartmentalization of the mouse adult cerebellum. J Comp Neurol 519:2594–2614

    Article  PubMed  Google Scholar 

  • Penuela S, Kelly JJ, Churko JM, Barr KJ, Berger AC, Laird DW (2014) Panx1 regulates cellular properties of keratinocytes and dermal fibroblasts in skin development and wound healing. J Invest Dermatol 134:2026–2035

    Article  CAS  PubMed  Google Scholar 

  • Phippard D, Lu L, Lee D, Saunders JC, Crenshaw EB 3rd (1999) Targeted mutagenesis of the POU-domain gene Brn4/Pou3f4 causes developmental defects in the inner ear. J Neurosci 19:5980–5989

    CAS  PubMed  Google Scholar 

  • Prochnow N, Abdulazim A, Kurtenbach S, Wildforster V, Dvoriantchikova G, Hanske J, Petrasch-Parwez E, Shestopalov VI, Dermietzel R, Manahan-Vaughan D, Zoidl G (2012) Pannexin1 stabilizes synaptic plasticity and is needed for learning. PLoS One 7:e51767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao MS, Jacobson M (2005) Developmental neurobiology. Springer, Heidelberg

    Book  Google Scholar 

  • Ray A, Zoidl G, Weickert S, Wahle P, Dermietzel R (2005) Site-specific and developmental expression of pannexin1 in the mouse nervous system. Eur J Neurosci 21:3277–3290

    Article  PubMed  Google Scholar 

  • Ray A, Zoidl G, Wahle P, Dermietzel R (2006) Pannexin expression in the cerebellum. Cerebellum 5:189–192

    Article  CAS  PubMed  Google Scholar 

  • Retamal MA, Alcayaga J, Verdugo CA, Bultynck G, Leybaert L, Sáez PJ, Fernández R, León LE, Sáez JC (2014) Opening of pannexin- and connexin-based channels increases the excitability of nodose ganglion sensory neurons. Front Cell Neurosci 8:158

    Article  PubMed  PubMed Central  Google Scholar 

  • Rigato C, Swinnen N, Buckinx R, Couillin I, Mangin JM, Rigo JM, Legendre P, Le Corronc H (2012) Microglia proliferation is controlled by P2X7 receptors in a Pannexin-1-independent manner during early embryonic spinal cord invasion. J Neurosci 32:11559–11573

    Article  CAS  PubMed  Google Scholar 

  • Sanchez HA, Verselis VK (2014) Aberrant Cx26 hemichannels and keratitis-ichthyosis-deafness syndrome: insights into syndromic hearing loss. Front Cell Neurosci 8:354

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanes DH, Reh TA, Harris WA (2011) Development of the nervous system. Elsevier Science, Amsterdam

    Google Scholar 

  • Santiago MF, Veliskova J, Patel NK, Lutz SE, Caille D, Charollais A, Meda P, Scemes E (2011) Targeting pannexin1 improves seizure outcome. PLoS One 6:e25178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar FH, Visscher DW, Crissman JD (1993) Quantitative analysis of Her-2/neu (ERBB2) gene expression using reverse transcriptase polymerase chain reaction. Diagn Mol Pathol 2:210–218

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Ahmad S, Shestopalov VI, Lin X (2008) Pannexins are new molecular candidates for assembling gap junctions in the cochlea. Neuroreport 19:1253–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitalis T, Ansorge MS, Dayer AG (2013) Serotonin homeostasis and serotonin receptors as actors of cortical construction: special attention to the 5-HT3A and 5-HT6 receptor subtypes. Front Cell Neurosci 7:93

  • Vogt A, Hormuzdi SG, Monyer H (2005) Pannexin1 and Pannexin2 expression in the developing and mature rat brain. Mol Brain Res 141:113–120

    Article  CAS  PubMed  Google Scholar 

  • Wang XH, Streeter M, Liu YP, Zhao HB (2009) Identification and characterization of pannexin expression in the mammalian cochlea. J Comp Neurol 512:336–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wicki-Stordeur LE, Swayne LA (2013) Panx1 regulates neural stem and progenitor cell behaviours associated with cytoskeletal dynamics and interacts with multiple cytoskeletal elements. Cell Commun Signal 11:62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wicki-Stordeur LE, Dzugalo AD, Swansburg RM, Suits JM, Swayne LA (2012) Pannexin 1 regulates postnatal neural stem and progenitor cell proliferation. Neural Dev 7:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wurst W, Bally-Cuif L (2001) Neural plate patterning: upstream and downstream of the isthmic organizer. Nat Rev Neurosci 2:99–108

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Yang Y, Tang X, Zhao M, Liang F, Xu P, Hou B, Xing Y, Bao X, Fan X (2013) Bergmann glia function in granule cell migration during cerebellum development. Mol Neurobiol 47:833–844

    Article  CAS  PubMed  Google Scholar 

  • Zappala A, Cicero D, Serapide MF, Paz C, Catania MV, Falchi M, Parenti R, Panto MR, La Delia F, Cicirata F (2006) Expression of pannexin1 in the CNS of adult mouse: cellular localization and effect of 4-aminopyridine-induced seizures. Neuroscience 141:167–178

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Laumet G, Chen SR, Hittelman WN, Pan HL (2015) Pannexin-1 up-regulation in the dorsal root ganglion contributes to neuropathic pain development. J Biol Chem 290:14647–14655

    Article  CAS  PubMed  Google Scholar 

  • Zhao HB, Zhu Y, Liang C, Chen J (2015) Pannexin 1 deficiency can induce hearing loss. Biochem Biophys Res Commun 463:143–147

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors wish to thank Prof. Dr. Georg Zoidl (Bochum, Germany; Canada) for the gift of the mPanx1 plasmid. They are also very grateful to Prof. Dr. Beate Brand-Saberi, Dr. Verena Chankiewicz and Swantje Wulf for their expert advice on whole-mount in situ hybridization techniques, to Prof. Dr. Hannah Monyer for providing Panx1 transgenic mice and to campus colleagues Prof. Dr. Uwe Walldorf for his support and the opportunity to use his microscopic equipment, Dr. Barbara Schäfer for support with the cloning of DNA fragments and Ann Soether for language editing. The data and findings of this study were obtained from the dissertation of Abdulrahman Raslan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carola Meier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raslan, A., Hainz, N., Beckmann, A. et al. Pannexin-1 expression in developing mouse nervous system: new evidence for expression in sensory ganglia. Cell Tissue Res 364, 29–41 (2016). https://doi.org/10.1007/s00441-015-2294-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2294-5

Keywords

Navigation