Skip to main content

Advertisement

Log in

Current concepts of hair cell differentiation and planar cell polarity in inner ear sensory organs

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Phylogenetically and ontogenetically, vertebrate development led to the generation of several inner ear sensory organs. During embryogenesis, cell fate specification determines whether each progenitor cell differentiates into a sensory hair cell or a supporting cell within the common sensory primordium. Finally, all sensory epithelia of the inner ear consist of a hair cell/supporting cell mosaic, albeit with anatomical differences depending on the sensory organ type. Hair cells develop a polarized bundle of stereovilli that is of functional importance for mechanotransduction. After initiating stereovillar development, hair cells align their bundles in a coordinated fashion, generating a characteristic hair cell orientation pattern, a process referred to as planar cell polarity (PCP). The pathway that controls PCP in the inner ear needs both to establish the development of a polarized morphology of the stereovillar bundle of the hair cell and to organize a systematic hair cell alignment. Because the hair cell orientation patterns of the various inner ear organs and vertebrate species differ fundamentally, it becomes apparent that in vertebrates, different aspects of PCP need to be independently controlled. In spite of important progress recently gained in the field of PCP research, we still need to identify the mechanisms (1) that initiate molecular asymmetries in cells, (2) that guide the transmission of polarity information from cell to cell, and (3) that consistently translate such polarity information into morphological asymmetries of hair cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Copley CO, Duncan JS, Liu C, Cheng H, Deans MR (2013) Postnatal refinement of auditory hair cell planar polarity deficits occurs in the absence of Vangl2. J Neurosci 33:14001–14016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dabdoub A, Donohue MJ, Brennan A, Wolf V, Montcouquiol M, Sassoon DA, Hseih J-C, Rubin JS, Salinas PC, Kelley MW (2003) Wnt signaling mediates reorientation of outer hair cell stereociliary bundles in the mammalian cochlea. Development 130:2375–2384

    Article  CAS  PubMed  Google Scholar 

  • Deans MR (2013) A balance of form and function: planar polarity and development of the vestibular maculae. Semin Cell Dev Biol 24:490–498

    Article  PubMed Central  PubMed  Google Scholar 

  • Deans MR, Antic D, Suyama K, Scott MP, Axelrod JD, Goodrich LV (2007) Asymmetric distribution of prickle-like 2 reveals an early underlying polarization of vestibular sensory epithelia in the inner ear. J Neurosci 27:3139–3147

    Article  CAS  PubMed  Google Scholar 

  • Ezan J, Montcouquiol M (2013) Revisiting planar cell polarity in the inner ear. Semin Cell Dev Biol 24:499–506

    Article  PubMed  Google Scholar 

  • Ezan J, Lasvaux L, Gezer A, Novakovic A, May-Simera H, Belotti E, Lhoumeau A-C, Birnbaumer L, Beer-Hammer S, Borg J-P, Le Bivic A, Nürnberg B, Sans N, Montcouquiol M (2013) Primary cilium migration depends on G-protein signalling control of subapical cytoskeleton. Nat Cell Biol 15:1107–1115

    Article  CAS  PubMed  Google Scholar 

  • Fairclough SR, Chen Z, Kramer E, Zeng Q, Young S, Robertson HM, Begovic E, Richter DJ, Russ C, Westbrook MJ, Manning G, Lang BF, Haas B, Nusbaum C, King N (2013) Premetazoan genome evolution and the regulation of cell differentiation in the choanoflagellate Salpingoeca rosetta. Genome Biol 14:R15

    Article  PubMed Central  PubMed  Google Scholar 

  • Fekete DM, Muthukumar S, Karagogeos D (1998) Hair cells and supporting cells share a common progenitor in the avian inner ear. J Neurosci 18:7811–7821

    CAS  PubMed  Google Scholar 

  • Giese AP, Ezan J, Wang L, Lasvaux L, Lembo F, Mazzocco C, Richard E, Reboul J, Borg J-P, Kelley MW, Sans N, Brigande J, Montcouquiol M (2012) Gipc1 has a dual role in Vangl2 trafficking and hair bundle integrity in the inner ear. Development 139:3775–3785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goodrich LV, Strutt D (2011) Principles of planar polarity in animal development. Development 138:1877–1892

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hudspeth AJ (2005) How the ear’s works work: mechanoelectrical transduction and amplification by hair cells. C R Biol 328:155–162

    Article  CAS  PubMed  Google Scholar 

  • Kondo S, Miura T (2010) Reaction–diffusion model as a framework for understanding biological pattern formation. Science 329:1616–1620

    Article  CAS  PubMed  Google Scholar 

  • Ladhams A, Pickles JO (1996) Morphology of the monotreme organ of Corti and macula lagena. J Comp Neurol 366:335–347

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Andreeva A, Sipe CW, Liu L, Cheng A, Lu X (2012) PTK7 regulates myosin II activity to orient planar polarity in the mammalian auditory epithelium. Curr Biol 22:956–966

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lewis ER, Leverenz EL, Bialek WS (1985) The vertebrate inner ear. CRC, Boca Raton

    Google Scholar 

  • May-Simera HL, Petralia RS, Montcouquiol M, Wang Y-X, Szarama KB, Liu Y, Lin W, Deans MR, Pazour GJ, Kelley MW (2015) Ciliary proteins Bbs8 and Ift20 promote planar cell polarity in the cochlea. Development 142:555–566

    Article  CAS  PubMed  Google Scholar 

  • Montcouquiol M, Rachel RA, Lanford PJ, Copeland NG, Jenkins NA, Kelley MW (2003) Identification of Vangl2 and Scrb1 as planar polarity genes in mammals. Nature 423:173–177

    Article  CAS  PubMed  Google Scholar 

  • Nayak GD, Ratnayaka HSK, Goodyear RJ, Richardson GP (2007) Development of the hair bundle and mechanotransduction. Int J Dev Biol 51:597–608

    Article  CAS  PubMed  Google Scholar 

  • Neves J, Vachkov I, Giraldez F (2013) Sox2 regulation of hair cell development: incoherence makes sense. Hear Res 297:20–29

    Article  CAS  PubMed  Google Scholar 

  • Qian D, Jones C, Rzadzinska A, Mark S, Zhang X, Steel KP, Dai X, Chen P (2007) Wnt5a functions in planar cell polarity regulation in mice. Dev Biol 306:121–133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sienknecht UJ (2013) Origin and development of hair cell orientation in the inner ear. In: Fay RR, Popper AN, Köppl C, Manley GA (eds) Insights from comparative hearing research, vol 49. Springer, New York, pp 69–109

    Chapter  Google Scholar 

  • Sienknecht UJ, Fekete DM (2008) Comprehensive Wnt-related gene expression during cochlear duct development in chicken. J Comp Neurol 510:378–395

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sienknecht UJ, Anderson BK, Parodi RM, Fantetti KN, Fekete DM (2011) Non-cell-autonomous planar cell polarity propagation in the auditory sensory epithelium of vertebrates. Dev Biol 352:27–39

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sienknecht UJ, Köppl C, Fritzsch B (2014) Evolution and development of hair cell polarity and efferent function in the inner ear. Brain Behav Evol 83:150–161

    PubMed  Google Scholar 

  • Struhl G, Casal J, Lawrence PA (2012) Dissecting the molecular bridges that mediate the function of Frizzled in planar cell polarity. Development 139:3665–3674

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tilney LG, Tilney MS, DeRosier DJ (1992) Actin filaments, stereocilia, and hair cells: how cells count and measure. Annu Rev Cell Biol 8:257–274

    Article  CAS  PubMed  Google Scholar 

  • Vervenne HBVK, Crombez KRMO, Lambaerts K, Carvalho L, Köppen M, Heisenberg C-P, Van de Ven WJM, Petit MMR (2008) Lpp is involved in Wnt/PCP signaling and acts together with Scrib to mediate convergence and extension movements during zebrafish gastrulation. Dev Biol 320:267–277

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Nathans J (2007) Tissue/planar cell polarity in vertebrates: new insights and new questions. Development 134:647–658

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Hamblet NS, Mark S, Dickinson ME, Brinkman BC, Segil N, Fraser SE, Chen P, Wallingford JB, Wynshaw-Boris A (2006a) Dishevelled genes mediate a conserved mammalian PCP pathway to regulate convergent extension during neurulation. Development 133:1767–1778

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Guo N, Nathans J (2006b) The role of Frizzled3 and Frizzled6 in neural tube closure and in the planar polarity of inner-ear sensory hair cells. J Neurosci 26:2147–2156

    Article  CAS  PubMed  Google Scholar 

  • Warchol ME, Montcouquiol M (2010) Maintained expression of the planar cell polarity molecule Vangl2 and reformation of hair cell orientation in the regenerating inner ear. J Assoc Res Otolaryngol 11:395–406

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu J, Roman A-C, Carvajal-Gonzalez JM, Mlodzik M (2013) Wg and Wnt4 provide long-range directional input to planar cell polarity orientation in Drosophila. Nat Cell Biol 15:1045–1055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu SR, Burkhardt M, Nowak M, Ries J, Petrásek Z, Scholpp S, Schwille P, Brand M (2009) Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules. Nature 461:533–536

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I gratefully acknowledge the indefatigable willingness of Geoff Manley to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike J. Sienknecht.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sienknecht, U.J. Current concepts of hair cell differentiation and planar cell polarity in inner ear sensory organs. Cell Tissue Res 361, 25–32 (2015). https://doi.org/10.1007/s00441-015-2200-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2200-1

Keywords

Navigation