Skip to main content

Advertisement

Log in

U0126 promotes osteogenesis of rat bone-marrow-derived mesenchymal stem cells by activating BMP/Smad signaling pathway

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

U0126 has been reported as a specific inhibitor of the ERK1/2 signaling pathway, which plays a vital role during the osteogenic differentiation of mesenchymal stem cells (MSCs). We report the positive effect of U0126 on the osteogenesis of rat MSCs. We find that U0126 promotes the osteogenic differentiation of rat MSCs as demonstrated by the quantitative real-time polymerase chain reaction for osteogenic markers, alkaline phosphatase activity and calcium nodule formation. Our data indicate that U0126 enhances the BMP/Smad signaling pathway in rat MSCs, while inhibiting the ERK1/2 signaling pathway. Furthermore, Western blot results demonstrate that U0126 increases Smad1/5/8 phosphorylation synergistically with β-glycerophosphate. In addition, U0126 significantly increases the expression of BMP2 during the process of osteogenesis in rat MSCs and the level of phosphorylated Smad1/5/8 is significantly reduced by BMP2 antibody, suggesting that U0126 also promotes the expression of BMP2 to enhance Smad proteins phosphorylation. Thus, we demonstrate a novel function for U0126 in promoting osteogenic differentiation of rat MSCs by the activation of the BMP/Smad signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Augello A, De Bari C (2010) The regulation of differentiation in mesenchymal stem cells. Hum Gene Ther 21:1226–1238

    Article  CAS  PubMed  Google Scholar 

  • Benisch P, Schilling T, Klein-Hitpass L, Frey SP, Seefried L, Raaijmakers N, Krug M, Regensburger M, Zeck S, Schinke T, Amling M, Ebert R, Jakob F (2012) The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors. PLoS One 7:e45142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen D, Zhao M, Mundy GR (2004) Bone morphogenetic proteins. Growth Factors 22:233–241

    Article  CAS  PubMed  Google Scholar 

  • Dalle Carbonare L, Valenti MT, Zanatta M, Donatelli L, Lo Cascio V (2009) Circulating mesenchymal stem cells with abnormal osteogenic differentiation in patients with osteoporosis. Arthritis Rheum 60:3356–3365

    Article  PubMed  Google Scholar 

  • Dang ZC, Lowik CW (2004) Differential effects of PD98059 and U0126 on osteogenesis and adipogenesis. J Cell Biochem 92:525–533

    Article  CAS  PubMed  Google Scholar 

  • Day TF, Guo X, Garrett-Beal L, Yang Y (2005) Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 8:739–750

    Article  CAS  PubMed  Google Scholar 

  • Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS, Van Dyk DE, Pitts WJ, Earl RA, Hobbs F, Copeland RA, Magolda RL, Scherle PA, Trzaskos JM (1998) Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 273:18623–18632

    Article  CAS  PubMed  Google Scholar 

  • Garrington TP, Johnson GL (1999) Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol 11:211–218

    Article  CAS  PubMed  Google Scholar 

  • Gaur T, Lengner CJ, Hovhannisyan H, Bhat RA, Bodine PVN, Komm BS, Javed A, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2005) Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem 280:33132–33140

    Article  CAS  PubMed  Google Scholar 

  • George J, Kuboki Y, Miyata T (2006) Differentiation of mesenchymal stem cells into osteoblasts on honeycomb collagen scaffolds. Biotechnol Bioeng 95:404–411

    Article  CAS  PubMed  Google Scholar 

  • Golub EE, Harrison G, Taylor AG, Camper S, Shapiro IM (1992) The role of alkaline-phosphatase in cartilage mineralization. Bone Miner 17:273–278

    Article  CAS  PubMed  Google Scholar 

  • Guan M, Yao W, Liu R, Lam KS, Nolta J, Jia J, Panganiban B, Meng L, Zhou P, Shahnazari M, Ritchie RO, Lane NE (2012) Directing mesenchymal stem cells to bone to augment bone formation and increase bone mass. Nat Med 18:456–462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Higuchi C, Myoui A, Hashimoto N, Kuriyama K, Yoshioka K, Yoshikawa H, Itoh K (2002) Continuous inhibition of MAPK signaling promotes the early osteoblastic differentiation and mineralization of the extracellular matrix. J Bone Miner Res 17:1785–1794

    Article  CAS  PubMed  Google Scholar 

  • Jackson RA, Kumarasuriyar A, Nurcombe V, Cool SM (2006) Long-term loading inhibits ERK1/2 phosphorylation and increases FGFR3 expression in MC3T3-E1 osteoblast cells. J Cell Physiol 209:894–904

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal RK, Jaiswal N, Bruder SP, Mbalaviele G, Marshak DR, Pittenger MF (2000) Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem 275:9645–9652

    Article  CAS  PubMed  Google Scholar 

  • James AW, Leucht P, Levi B, Carre AL, Xu Y, Helms JA, Longaker MT (2010) Sonic hedgehog influences the balance of osteogenesis and adipogenesis in mouse adipose-derived stromal cells. Tissue Eng A 16:2605–2616

    Article  CAS  Google Scholar 

  • Jiang YH, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du JB, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Article  CAS  PubMed  Google Scholar 

  • Jun JH, Yoon WJ, Seo SB, Woo KM, Kim GS, Ryoo HM, Baek JH (2010) BMP2-activated Erk/MAP kinase stabilizes Runx2 by increasing p300 levels and histone acetyltransferase activity. J Biol Chem 285:36410–36419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kelly DJ, Jacobs CR (2010) The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. Birth Defects Res C Embryol Today 90:75–85

    Article  CAS  Google Scholar 

  • Kumar S, Wan C, Ramaswamy G, Clemens TL, Ponnazhagan S (2010) Mesenchymal stem cells expressing osteogenic and angiogenic factors synergistically enhance bone formation in a mouse model of segmental bone defect. Mol Ther 18:1026–1034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lai CF, Chaudhary L, Fausto A, Halstead LR, Ory DS, Avioli LV, Cheng SL (2001) Erk is essential for growth, differentiation, integrin expression, and cell function in human osteoblastic cells. J Biol Chem 276:14443–14450

    CAS  PubMed  Google Scholar 

  • Mbalaviele G, Sheikh S, Stains JP, Salazar VS, Cheng SL, Chen D, Civitelli R (2005) Beta-catenin and BMP-2 synergize to promote osteoblast differentiation and new bone formation. J Cell Biochem 94:403–418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagayama M, Iwamoto M, Hargett A, Kamiya N, Tamamura Y, Young B, Morrison T, Takeuchi H, Pacifici M, Enomoto-Iwamoto M, Koyama E (2008) Wnt/beta-catenin signaling regulates cranial base development and growth. J Dent Res 87:244–249

    Article  CAS  PubMed  Google Scholar 

  • Park OJ, Kim HJ, Woo KM, Baek JH, Ryoo HM (2010) FGF2-activated ERK mitogen-activated protein kinase enhances Runx2 acetylation and stabilization. J Biol Chem 285:3568–3574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pino AM, Rosen CJ, Rodriguez JP (2012) In osteoporosis, differentiation of mesenchymal stem cells (MSCs) improves bone marrow adipogenesis. Biol Res 45:279–287

    Article  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez JP, Montecinos L, Rios S, Reyes P, Martinez J (2000) Mesenchymal stem cells from osteoporotic patients produce a type I collagen-deficient extracellular matrix favoring adipogenic differentiation. J Cell Biochem 79:557–565

    Article  CAS  PubMed  Google Scholar 

  • Sagata N (1997) What does Mos do in oocytes and somatic cells? Bioessays 19:13–21

    Article  CAS  PubMed  Google Scholar 

  • Salasznyk RM, Klees RF, Williams WA, Boskey A, Plopper GE (2007) Focal adhesion kinase signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells. Exp Cell Res 313:22–37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shekkeris AS, Jaiswal PK, Khan WS (2012) Clinical applications of mesenchymal stem cells in the treatment of fracture non-union and bone defects. Curr Stem Cell Res Ther 7:127–133

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi Y, Suzawa M, Kikuchi T, Nishida E, Fujita T, Matsumoto T (1997) Differentiation and transforming growth factor-beta receptor down-regulation by collagen-alpha 2 beta 1 integrin interaction is mediated by focal adhesion kinase and its downstream signals in murine osteoblastic cells. J Biol Chem 272:29309–29316

    Article  CAS  PubMed  Google Scholar 

  • Undale A, Fraser D, Hefferan T, Kopher RA, Herrick J, Evans GL, Li X, Kakar S, Hayes M, Atkinson E, Yaszemski MJ, Kaufman DS, Westendorf JJ, Khosla S (2011) Induction of fracture repair by mesenchymal cells derived from human embryonic stem cells or bone marrow. J Orthop Res 29:1804–1811

    Article  PubMed Central  PubMed  Google Scholar 

  • Xiao G, Jiang D, Thomas P, Benson MD, Guan K, Karsenty G, Franceschi RT (2000) MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfa1. J Biol Chem 275:4453–4459

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Song C, Ni M, Meng F, Xie H, Li G (2012) Cellular retinol-binding protein 1 (CRBP-1) regulates osteogenenesis and adipogenesis of mesenchymal stem cells through inhibiting RXRalpha-induced beta-catenin degradation. Int J Biochem Cell Biol 44:612–619

    Article  CAS  PubMed  Google Scholar 

  • Zhang WL, Huitorel P, Glass R, Fernandez-Serra M, Arnone MI, Chiri S, Picard A, Ciapa B (2005) A MAPK pathway is involved in the control of mitosis after fertilization of the sea urchin egg. Dev Biol 282:192–206

    Article  CAS  PubMed  Google Scholar 

  • Zhuang S, Schnellmann RG (2006) A death-promoting role for extracellular signal-regulated kinase. J Pharmacol Exp Ther 319:991–997

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Li.

Additional information

Liangliang Xu, Yang Liu and Yonghui Hou contributed equally to this work.

The authors are grateful for financial support from the Hong Kong Government Research Grant Council, General Research Fund (CUHK471110 and CUHK470813) to G.L. This study was also supported in part by the SMART program, the Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong and a donation from the Lui Che Woo Foundation, Hong Kong.

The authors declare that they have no competing or conflicting interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

(DOCX 230 kb)

Supplementary Figure 2

(DOCX 523 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Liu, Y., Hou, Y. et al. U0126 promotes osteogenesis of rat bone-marrow-derived mesenchymal stem cells by activating BMP/Smad signaling pathway. Cell Tissue Res 359, 537–545 (2015). https://doi.org/10.1007/s00441-014-2025-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-2025-3

Keywords

Navigation