Skip to main content

Advertisement

Log in

Aloin promotes osteogenesis of bone-marrow-derived mesenchymal stem cells via the ERK1/2-dependent Runx2 signaling pathway

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Osteoporosis is characterized by low bone mass and the degeneration of bone structure, conditions which increase the risk of fracture. Aloin has been shown to affect bone metabolism, but its role in osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) remains unclear. The aim of our study was to determine whether aloin promotes the proliferation and osteogenic differentiation of BMSCs and, if so, whether it acts via activation of the ERK1/2-Runx2 signaling pathway. We found that the different concentrations of aloin tested had no obvious cytotoxic effects on the viability of BMSCs. Under osteogenic induction conditions, aloin increased cellular alkaline phosphatase activity, promoted BMSC mineralization, and increased osteogenic-related gene expression. In addition, treating the BMSCs with the signal transduction inhibitor PD98059 (ERK1/2) effectively attenuated Runx2 activation in these cells and also suppressed osteoblastic differentiation. Overall, our study demonstrates that aloin promotes osteogenic differentiation of BMSCs through activation of the ERK1/2-Runx2 signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. You L, Pan L, Chen L, Gu W, Chen J (2016) MiR-27a is essential for the shift from osteogenic differentiation to adipogenic differentiation of mesenchymal stem cells in postmenopausal osteoporosis. Cell Physiol Biochem 39:253–265. https://doi.org/10.1159/000445621

    Article  CAS  PubMed  Google Scholar 

  2. Raisz LG (2005) Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest 115:3318–3325. https://doi.org/10.1172/JCI27071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kanis JA, McCloskey EV, Johansson H, Oden A (2009) Approaches to the targeting of treatment for osteoporosis. Nat Rev Rheumatol 5:425–431. https://doi.org/10.1038/nrrheum.2009.139

    Article  CAS  PubMed  Google Scholar 

  4. Wu Z, Zhang J, Gu X, Zhang X, Shi S, Liu C (2016) Effects of the extract of Ginkgo biloba on the differentiation of bone marrow mesenchymal stem cells in vitro. Am J Transl Res 8:3032–3040

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377:1276–1287. https://doi.org/10.1016/S0140-6736(10)62349-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mumme M, Scotti C, Papadimitropoulos A, Todorov A, Hoffmann W, Bocelli-Tyndall C, Jakob M, Wendt D, Martin I, Barbero A (2012) Interleukin-1beta modulates endochondral ossification by human adult bone marrow stromal cells. Eur Cell Mater 24:224–236

    Article  CAS  Google Scholar 

  7. Baksh D, Boland GM, Tuan RS (2007) Cross-talk between Wnt signaling pathways in human mesenchymal stem cells leads to functional antagonism during osteogenic differentiation. J Cell Biochem 101:1109–1124. https://doi.org/10.1002/jcb.21097

    Article  CAS  PubMed  Google Scholar 

  8. Guo Q, Chen Y, Guo L, Jiang T, Lin Z (2016) miR-23a/b regulates the balance between osteoblast and adipocyte differentiation in bone marrow mesenchymal stem cells. Bone Res 4:16022. https://doi.org/10.1038/boneres.2016.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu YQ, Hong ZL, Zhan LB, Chu HY, Zhang XZ, Li GH (2016) Wedelolactone enhances osteoblastogenesis by regulating Wnt/beta-catenin signaling pathway but suppresses osteoclastogenesis by NF-kappaB/c-fos/NFATc1 pathway. Sci Rep 6:32260. https://doi.org/10.1038/srep32260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu X, Bao C, Xu HH, Pan J, Hu J, Wang P, Luo E (2016) Osteoprotegerin gene-modified BMSCs with hydroxyapatite scaffold for treating critical-sized mandibular defects in ovariectomized osteoporotic rats. Acta Biomater 42:378–388. https://doi.org/10.1016/j.actbio.2016.06.019

    Article  CAS  PubMed  Google Scholar 

  11. Hu HM, Yang L, Wang Z, Liu YW, Fan JZ, Fan J, Liu J, Luo ZJ (2013) Overexpression of integrin a2 promotes osteogenic differentiation of hBMSCs from senile osteoporosis through the ERK pathway. Int J Clin Exp Pathol 6:841–852

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Pengjam Y, Madhyastha H, Madhyastha R, Yamaguchi Y, Nakajima Y, Maruyama M (2016) NF-kappaB pathway inhibition by anthrocyclic glycoside aloin is key event in preventing osteoclastogenesis in RAW264.7 cells. Phytomedicine 23:417–428. https://doi.org/10.1016/j.phymed.2016.01.006

    Article  CAS  PubMed  Google Scholar 

  13. Harlev E, Nevo E, Lansky EP, Ofir R, Bishayee A (2012) Anticancer potential of aloes: antioxidant, antiproliferative, and immunostimulatory attributes. Planta Med 78:843–852. https://doi.org/10.1055/s-0031-1298453

    Article  CAS  PubMed  Google Scholar 

  14. Chang R, Zhou R, Qi X, Wang J, Wu F, Yang W, Zhang W, Sun T, Li Y, Yu J (2016) Protective effects of aloin on oxygen and glucose deprivation-induced injury in PC12 cells. Brain Res Bull 121:75–83. https://doi.org/10.1016/j.brainresbull.2016.01.001

    Article  CAS  PubMed  Google Scholar 

  15. Silva MA, Trevisan G, Hoffmeister C, Rossato MF, Boligon AA, Walker CI, Klafke JZ, Oliveira SM, Silva CR, Athayde ML, Ferreira J (2014) Anti-inflammatory and antioxidant effects of Aloe saponaria Haw in a model of UVB-induced paw sunburn in rats. J Photochem Photobiol B 133:47–54. https://doi.org/10.1016/j.jphotobiol.2014.02.019

    Article  CAS  PubMed  Google Scholar 

  16. Park MY, Kwon HJ, Sung MK (2011) Dietary aloin, aloesin, or aloe-gel exerts anti-inflammatory activity in a rat colitis model. Life Sci 88:486–492. https://doi.org/10.1016/j.lfs.2011.01.010

    Article  CAS  PubMed  Google Scholar 

  17. Pengjam Y, Madhyastha H, Madhyastha R, Yamaguchi Y, Nakajima Y, Maruyama M (2016) Anthraquinone glycoside aloin induces osteogenic initiation of MC3T3-E1 cells: involvement of MAPK mediated Wnt and Bmp signaling. Biomol Ther (Seoul) 24:123–131. https://doi.org/10.4062/biomolther.2015.106

    Article  CAS  Google Scholar 

  18. Xu D, Xu L, Zhou C, Lee WY, Wu T, Cui L, Li G (2014) Salvianolic acid B promotes osteogenesis of human mesenchymal stem cells through activating ERK signaling pathway. Int J Biochem Cell Biol 51:1–9. https://doi.org/10.1016/j.biocel.2014.03.005

    Article  CAS  PubMed  Google Scholar 

  19. Jun JH, Yoon WJ, Seo SB, Woo KM, Kim GS, Ryoo HM, Baek JH (2010) BMP2-activated Erk/MAP kinase stabilizes Runx2 by increasing p300 levels and histone acetyltransferase activity. J Biol Chem 285:36410–36419. https://doi.org/10.1074/jbc.M110.142307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang P, Wu Y, Jiang Z, Jiang L, Fang B (2012) Osteogenic response of mesenchymal stem cells to continuous mechanical strain is dependent on ERK1/2-Runx2 signaling. Int J Mol Med 29:1083–1089. https://doi.org/10.3892/ijmm.2012.934

    Article  CAS  PubMed  Google Scholar 

  21. Chen E, Xue D, Zhang W, Lin F, Pan Z (2015) Extracellular heat shock protein 70 promotes osteogenesis of human mesenchymal stem cells through activation of the ERK signaling pathway. FEBS Lett 589:4088–4096. https://doi.org/10.1016/j.febslet.2015.11.021

    Article  CAS  PubMed  Google Scholar 

  22. Singh A, Singh A, Sen D (2016) Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010–2015). Stem Cell Res Ther 7:82. https://doi.org/10.1186/s13287-016-0341-0

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kanno T, Takahashi T, Tsujisawa T, Ariyoshi W, Nishihara T (2007) Mechanical stress-mediated Runx2 activation is dependent on Ras/ERK1/2 MAPK signaling in osteoblasts. J Cell Biochem 101:1266–1277. https://doi.org/10.1002/jcb.21249

    Article  CAS  PubMed  Google Scholar 

  24. Jeon YM, Kook SH, Rho SJ, Lim SS, Choi KC, Kim HS, Kim JG, Lee JC (2013) Fibroblast growth factor-7 facilitates osteogenic differentiation of embryonic stem cells through the activation of ERK/Runx2 signaling. Mol Cell Biochem 382:37–45. https://doi.org/10.1007/s11010-013-1716-5

    Article  CAS  PubMed  Google Scholar 

  25. Cock IE (2008) Antimicrobial activity of Aloe barbadensis Miller leaf gel components. Internet J Microbiol 4:17

    Google Scholar 

  26. Cock I, Kalt F (2010) A modified MS2 bacteriophage plaque reduction assay for the rapid screening of antiviral plant extracts. Pharmacognosy Res 2:221–228

    Article  Google Scholar 

  27. Ray A, Gupta SD, Ghosh S (2013) Evaluation of anti-oxidative activity and UV absorption potential of the extracts of Aloe vera L. gel from different growth periods of plants. Ind Crops Prod 49:712–719

    Article  CAS  Google Scholar 

  28. Buenz EJ (2008) Aloin induces apoptosis in Jurkat cells. Toxicol In Vitro 22:422–429. https://doi.org/10.1016/j.tiv.2007.10.013

    Article  CAS  PubMed  Google Scholar 

  29. Pecere T, Gazzola MV, Mucignat C, Parolin C, Vecchia FD, Cavaggioni A, Basso G, Diaspro A, Salvato B, Carli M, Palu G (2000) Aloe-emodin is a new type of anticancer agent with selective activity against neuroectodermal tumors. Cancer Res 60:2800–2804

    CAS  PubMed  Google Scholar 

  30. Esmat AY, El-Gerzawy SM, Rafaat A (2005) DNA ploidy and S phase fraction of breast and ovarian tumor cells treated with a natural anthracycline analog (aloin). Cancer Biol Ther 4:108–112

    Article  CAS  Google Scholar 

  31. Ell J, Regn S, Buchberger AM, von Bomhard A, Stark T, Schantz JT, Storck K (2017) Donor-dependent variances of human adipose-derived stem cells in respect to the in-vitro endothelial cell differentiation capability. Adipocyte 6:20–32. https://doi.org/10.1080/21623945.2016.1273299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xing H, Komasa S, Taguchi Y, Sekino T, Okazaki J (2014) Osteogenic activity of titanium surfaces with nanonetwork structures. Int J Nanomed 9:1741–1755. https://doi.org/10.2147/ijn.s58502

    Article  Google Scholar 

  33. Gao T, Cui W, Wang Z, Wang Y, Liu Y, Malliappan PS, Ito Y, Zhang P (2016) Photo-immobilization of bone morphogenic protein 2 on PLGA/HA nanocomposites to enhance the osteogenesis of adipose-derived stem cells. RSC Adv 6:20202–20210

    Article  CAS  Google Scholar 

  34. Bruderer M, Richards R, Alini M, Stoddart M (2014) Role and regulation of RUNX2 in osteogenesis. Eur Cell Mater 28:269–286

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Special Funds of Public Interest Research and Capacity Building of Guangdong Province, China (2015A030302078), the PhD Start-up Fund of Affiliated Hospital of Guangdong Medical University (BJ201508, BJ201520) and the Zhanjiang Municipal Governmental Specific Financial Fund Allocated for Competitive Scientific & Technological Projects (2014A06005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juanhua Quan or Jiaqi Chu.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Chemical structure of Aloin (EPS 332 kb)

Supplementary Fig. 2

Cell proliferation was assessed by the MTS assay after treatment with various concentrations of aloin (0–50 μM) at different time-points. All data shown are representative of three independent experiments (EPS 1418 kb)

Supplementary material 3 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Kong, J., Chen, Z. et al. Aloin promotes osteogenesis of bone-marrow-derived mesenchymal stem cells via the ERK1/2-dependent Runx2 signaling pathway. J Nat Med 73, 104–113 (2019). https://doi.org/10.1007/s11418-018-1249-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-018-1249-z

Keywords

Navigation