Skip to main content
Log in

New results for the random nearest neighbor tree

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

In this paper, we study the online nearest neighbor random tree in dimension \(d\in {\mathbb {N}}\) (called d-NN tree for short) defined as follows. We fix the torus \({\mathbb {T}}^d_n\) of dimension d and area n and equip it with the metric inherited from the Euclidean metric in \({\mathbb {R}}^d\). Then, embed consecutively n vertices in \({\mathbb {T}}^d_n\) uniformly at random and independently, and let each vertex but the first one connect to its (already embedded) nearest neighbor. Call the resulting graph \(G_n\). We show multiple results concerning the degree sequence of \(G_n\). First, we prove that typically the number of vertices of degree at least \(k\in {\mathbb {N}}\) in the d-NN tree decreases exponentially with k and is tightly concentrated by a new Lipschitz-type concentration inequality that may be of independent interest. Second, we obtain that the maximum degree of \(G_n\) is of logarithmic order. Third, we give explicit bounds for the number of leaves that are independent of the dimension and also give estimates for the number of paths of length two. Moreover, we show that typically the height of a uniformly chosen vertex in \(G_n\) is \((1+o(1))\log n\) and the diameter of \({\mathbb {T}}^d_n\) is \((2e+o(1))\log n\), independently of the dimension. Finally, we define a natural infinite analog \(G_{\infty }\) of \(G_n\) and show that it corresponds to the local limit of the sequence of finite graphs \((G_n)_{n \ge 1}\). Furthermore, we prove almost surely that \(G_{\infty }\) is locally finite, that the simple random walk on \(G_{\infty }\) is recurrent, and that \(G_{\infty }\) is connected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The choice of the torus as an ambient space might not be the most natural. However, it avoids the need for boundary considerations and, in most part, does not modify the results. Indeed, the main proof ideas can be applied for other geometric spaces but at the cost of an increased level of technicality.

  2. Integrating (14) over \(p_1, p_2\): https://www.wolframalpha.com/input?i=integrate+2+x_1+x_2+exp%28-+2x_2p_2-2x_1%28p_1-p_2%29%29+for+p_1+from+2p_2+to+infinity%2C+p_2+from+0+to+infinity%2C+0+%3C%3D+x_0+%3C+x_1+%3C+x_2+%3C%3D+1.

  3. Integrating (15): https://www.wolframalpha.com/input?i=integrate+%28x_2%2F%282x_1%2B2x_2%29%29+for+x_0+from+0+to+1%2C+for+x_1+from+x_0+to+1%2C+for+x_2+from+x_1+to+1.

References

  1. Acan, H.: Perfect matchings and Hamilton cycles in uniform attachment graphs. arXiv:1908.03659 (2019)

  2. Addario-Berry, L., Devroye, L., Lugosi, G., Velona, V.: Broadcasting on random recursive trees. Ann. Appl. Probab. (2021)

  3. Ahlberg, D., Tassion, V., Teixeira, A.: Sharpness of the phase transition for continuum percolation in \(\mathbb{R} ^2\). Probab. Theory Relat. Fields 172(1–2), 525–581 (2016)

    Google Scholar 

  4. Aldous, D.: Random partitions of the plane via Poissonian coloring and a self-similar process of coalescing planar partitions. Ann. Probab. 46(4), 2000–2037 (2018)

    Article  MathSciNet  Google Scholar 

  5. Aldous, D., Steele, J.M.: The Objective Method: Probabilistic Combinatorial Optimization and Local Weak Convergence. Springer, Berlin (2004)

    Google Scholar 

  6. Altman, N.S.: An introduction to kernel and nearest-neighbor non-parametric regression. Am. Stat. 46(3), 175–185 (1992)

    Article  Google Scholar 

  7. Baccelli, F., Bordenave, C.: The radial spanning tree of a Poisson point process. Ann. Appl. Probab. 17(1), 305–359 (2007)

    Article  MathSciNet  Google Scholar 

  8. Baccelli, F., Coupier, D., Tran, V.C.: Semi-infinite paths of the two-dimensional radial spanning tree. Adv. Appl. Probab. 45(4), 895–916 (2013)

    Article  MathSciNet  Google Scholar 

  9. Bagchi, A., Bansal, S.: On the metric distortion of nearest-neighbour graphs on random point sets (2008). arXiv:0804.3784

  10. Bailey, T., Jain, A.: A note on distance-weighted \(k\)-nearest neighbor rules. IEEE Trans. Syst. Man Cybern. 8(4), 311–313 (1978)

    Article  Google Scholar 

  11. Balister, P.N., Bollobás, B.: Percolation in the \(k\)-nearest neighbor graphs. https://www.memphis.edu/msci/people/pbalistr/kperc.pdf (2011)

  12. Balister, P.N., Bollobás, B., Sarkar, A., Walters, M.J.: Connectivity of random \(k\)-nearest neighbour graphs. Adv. Appl. Probab. 37, 1–24 (2005)

    Article  MathSciNet  Google Scholar 

  13. Balister, P.N., Bollobás, B., Sarkar, A., Walters, M.J.: A critical constant for the \(k\)-nearest neighbour model. Adv. Appl. Probab. 41, 1–12 (2009)

    Article  MathSciNet  Google Scholar 

  14. Banerjee, E., Bhamidi, S.: Root finding algorithms and persistence of Jordan centrality in growing random trees. Ann. Appl. Probab. 32(3), 2180–2210 (2022)

    Article  MathSciNet  Google Scholar 

  15. Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  16. Basdevant, A-L., Blanc, G., Curien, N., Singh, A.: Fractal properties of the frontier in Poissonian coloring. ALEA 20, 1565–1586 (2023)

  17. Benjamini, I., Schramm, O.: Recurrence of distributional limits of finite planar graphs. In: Selected Works of Oded Schramm, pp. 533–545 (2011)

  18. Berger, N., Bollobás, B., Borgs, C., Chayes, J., Riordan, O.: Degree distribution of the FKP network model. In: International Colloquium on Automata, Languages, and Programming, pp. 725–738. Springer (2003)

  19. Bermejo, S., Cabestany, J.: Adaptive soft \(k\)-nearest neighbour classifiers. Pattern Recognit. 33(12), 1999–2005 (2000)

    Article  ADS  Google Scholar 

  20. Bollobás, B., Riordan, O.: The diameter of a scale-free random graph. Combinatorica 24, 5–34 (2004)

    Article  MathSciNet  Google Scholar 

  21. Bollobás, B., Riordan, O., Spencer, J., Tusnády, G.: The degree sequence of a scale-free random graph process. Random Struct. Algorithms 18, 279–290 (2001)

    Article  MathSciNet  Google Scholar 

  22. Bordenave, C.: Navigation on a Poisson point process. Ann. Appl. Probab. 18(2), 708–746 (2008)

    Article  MathSciNet  Google Scholar 

  23. Bubeck, S., Devroye, L., Lugosi, G.: Finding Adam in random growing trees. Random Struct. Algorithms 50(2), 158–172 (2017)

    Article  MathSciNet  Google Scholar 

  24. Bubeck, S., Eldan, R., Mossel, E., Rácz, M.Z.: From trees to seeds: on the inference of the seed from large trees in the uniform attachment model. Bernoulli 23(4A), 2887–2916 (2017)

    Article  MathSciNet  Google Scholar 

  25. Bubeck, S., Mossel, E., Rácz, M.Z.: On the influence of the seed graph in the preferential attachment model. IEEE Trans. Netw. Sci. Eng. 2(1), 30–39 (2015)

    Article  MathSciNet  Google Scholar 

  26. Canonne, C.: A short note on Poisson tail bounds (2019)

  27. Casse, J.: Siblings in \(d\)-dimensional nearest neighbour trees (2023). arXiv:2302.10795

  28. Coupier, D.: Sublinearity of the number of semi-infinite branches for geometric random trees. Electron. J. Probab. 23, 1–33 (2018)

    Article  MathSciNet  Google Scholar 

  29. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theor. 13(1), 21–27 (2006)

    Article  Google Scholar 

  30. Curien, N., Duquesne, T., Kortchemski, I., Manolescu, I.: Scaling limits and influence of the seed graph in preferential attachment trees. J. l’École Poly. Math. 2(1), 1–34 (2015)

    MathSciNet  Google Scholar 

  31. Devroye, L.: Branching processes in the analysis of the heights of trees. Acta Inform. 24(3), 277–298 (1987)

    Article  MathSciNet  Google Scholar 

  32. Devroye, L.: Applications of the theory of records in the study of random trees. Acta Inform. 26, 123–130 (1988)

    Article  MathSciNet  Google Scholar 

  33. Devroye, L., Fawzi, O., Fraiman, N.: The height of scaled attachment random recursive trees. In: Discrete Mathematics and Theoretical Computer Science, pp. 129–142 (2010)

  34. Devroye, L., Reddad, T.: On the discovery of the seed in uniform attachment trees. Internet Math. 1(1) (2019)

  35. Drmota, M.: Random Trees: An Interplay Between Combinatorics and Probability. Springer Science and Business Media (2009)

    Book  Google Scholar 

  36. Dudani, S.A.: The distance-weighted \(k\)-nearest neighbor rule. IEEE Trans. Syst. Man Cybern. SMC–6(4), 325–327 (1976)

    Article  Google Scholar 

  37. Eppstein, D., Paterson, M.S., Yao, F.F.: On nearest-neighbor graphs. Disc. Comput. Geom. 17, 263–282 (1997)

    Article  MathSciNet  Google Scholar 

  38. Fanti, G., Kairouz, P., Oh, S., Ramchandran, K., Viswanath, P.: Rumor source obfuscation on irregular trees. ACM Sigmetrics 44, 153–164 (2016)

    Article  Google Scholar 

  39. Fanti, G., Kairouz, P., Oh, S., Ramchandran, K., Viswanath, P.: Hiding the rumor source. IEEE Trans. Inf. Theory 63(10), 6679–6713 (2017)

    Article  MathSciNet  Google Scholar 

  40. Fanti, G., Kairouz, P., Oh, S., Viswanath, P.: Spy vs. Spy: rumor source obfuscation. ACM Sigmetrics 43, 271–284 (2015)

    Article  Google Scholar 

  41. Fix, E., Hodges Jr., J.L.: Discriminatory analysis-nonparametric discrimination: consistency properties. Technical report, University of Berkeley, California (1951)

  42. Flaxman, A., Frieze, A.M., Fenner, T.: High degree vertices and eigenvalues in the preferential attachment graph. Internet Math. 2, 1–20 (2005)

    Article  MathSciNet  Google Scholar 

  43. Frieze, A., Karoński, M.: Introduction to Random Graphs. Cambridge University Press, Cambridge (2016)

    Google Scholar 

  44. Frieze, A., Pérez-Giménez, X., Prałat, P., Reiniger, B.: Perfect matchings and Hamiltonian cycles in the preferential attachment model. Random Struct. Algorithms 54(2), 258–288 (2019)

    Article  MathSciNet  Google Scholar 

  45. Gilbert, E.N.: Random plane networks. J. Soc. Ind. Appl. Math. 9(4), 533–543 (1961)

    Article  MathSciNet  Google Scholar 

  46. Häggström, O., Meester, R.: Nearest neighbor and hard sphere models in continuum percolation. Random Struct. Algorithms 9, 295–315 (1996)

    Article  MathSciNet  Google Scholar 

  47. Jahnel, B., Tóbiás, A.: SINR percolation for Cox point processes with random powers. Adv. Appl. Probab. 54(1), 227–253 (2022)

    Article  MathSciNet  Google Scholar 

  48. Jahnel, B., Tóbiás, A.: Absence of percolation in graphs based on stationary point processes with degrees bounded by two. Random Struct. Algorithms 62(1), 240–255 (2023)

    Article  MathSciNet  Google Scholar 

  49. Janson, S., Łuczak, T., Ruciński, A.: Random graphs. In: Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience, New York (2000)

  50. Jog, V., Loh, P.-L.: Analysis of centrality in sublinear preferential attachment trees via the Crump–Mode–Jagers branching process. IEEE Trans. Netw. Sci. Eng. 4(1), 1–12 (2016)

    Article  MathSciNet  Google Scholar 

  51. Jog, V., Loh, P.-L.: Persistence of centrality in random growing trees. Random Struct. Algorithms 52(1), 136–157 (2018)

    Article  MathSciNet  Google Scholar 

  52. Khim, J., Loh, P.-L.: Confidence sets for the source of a diffusion in regular trees. IEEE Trans. Netw. Sci. Eng. 4, 27–40 (2016)

    Article  MathSciNet  Google Scholar 

  53. Last, G., Penrose, M.: Lectures on the Poisson Process. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  54. Levy, E.: On the density for sums of independent exponential, Erlang and gamma variates. Stat. Pap. 1–29 (2021)

  55. Lugosi, G., Pereira, A.S.: Finding the seed of uniform attachment trees. Electron. J. Probab. 24, 1–15 (2019)

    Article  MathSciNet  Google Scholar 

  56. Mahmoud, H.: Limiting distributions for path lengths in recursive trees. Probab. Eng. Inf. Sci. 5(01), 53–59 (1991)

    Article  MathSciNet  Google Scholar 

  57. Mahmoud, H.: Distances in random plane-oriented recursive trees. J. Comput. Appl. Math. 41(1–2), 237–245 (1992)

    Article  MathSciNet  Google Scholar 

  58. Meester, R., Roy, R.: Continuum Percolation. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  59. Móri, T.F.: The maximum degree of the Barabási–Albert random tree. Comb. Probab. Comput. 14(3), 339–348 (2005)

    Article  Google Scholar 

  60. Navlakha, S., Kingsford, C.: Network archaeology: uncovering ancient networks from present-day interactions. PLOS Comput. Biol. 7(4), e1001119 (2011)

    Article  ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  61. Pain, M., Sénizergues, D.: Correction terms for the height of weighted recursive trees. Ann. Appl. Probab. 32(4), 3027–3059 (2022)

    Article  MathSciNet  Google Scholar 

  62. Penrose, M.: Random Geometric Graphs. Oxford University Press, Oxford (2003)

    Book  Google Scholar 

  63. Penrose, M.D., Wade, A.R.: Limit theory for the random on-line nearest-neighbor graph. Random Struct. Algorithms 32(2), 125–156 (2008)

    Article  MathSciNet  Google Scholar 

  64. Pittel, B.: Note on the heights of random recursive trees and random \(m\)-ary search trees. Random Struct. Algorithms 5, 337–348 (1994)

    Article  MathSciNet  Google Scholar 

  65. Rácz, M.Z., Sridhar, A.: Correlated randomly growing graphs. Ann. Appl. Probab. 32(2), 1058–1111 (2022)

    Article  MathSciNet  Google Scholar 

  66. Salez, J.: Some implications of local weak convergence for sparse random graphs. PhD thesis, Université Pierre et Marie Curie—Paris VI; Ecole Normale Supérieure de Paris (2011)

  67. Schulte, M., Yukich, J.E.: Multivariate second order Poincaré inequalities for Poisson functionals. Electron. J. Probab. 24 (2019)

  68. Sénizergues, D.: Geometry of weighted recursive and affine preferential attachment trees. Electron. J. Probab. 26, 1–56 (2021)

    Article  MathSciNet  Google Scholar 

  69. Shah, D., Zaman, T.: Detecting sources of computer viruses in networks: theory and experiment. ACM Sigmetrics 38, 203–214 (2010)

    Article  Google Scholar 

  70. Shah, D., Zaman, T.: Rumors in a network: Who’s the culprit? IEEE Trans. Inf. Theory 57(8), 5163–5181 (2011)

    Article  MathSciNet  Google Scholar 

  71. Steele, J.M.: Cost of sequential connection for points in space. Oper. Res. Lett. 8(3), 137–142 (1989)

    Article  MathSciNet  Google Scholar 

  72. Teng, S.H., Yao, F.: \(k\)-nearest neighbor clustering and percolation theory. Algorithmica 49, 192–211 (2007)

    Article  MathSciNet  Google Scholar 

  73. Trauthwein, T.: Quantitative CLTs on the Poisson space via Skorohod estimates and \(p\)-Poincaré inequalities (2022). arXiv:2212.03782

  74. van der Hofstad, R.: Random Graphs and Complex Networks, vol. 1. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  75. van der Hofstad, R.: Random graphs and complex networks, Volume 2. https://www.win.tue.nl/~rhofstad/NotesRGCN.html (2021)

  76. Wade, A.R.: Asymptotic theory for the multidimensional random on-line nearest-neighbour graph. Stoch. Process. Their Appl. 119(6), 1889–1911 (2009)

    Article  MathSciNet  Google Scholar 

  77. Warnke, L.: On the method of typical bounded differences. Comb. Probab. Comput. 25(2), 269–299 (2016)

    Article  MathSciNet  Google Scholar 

  78. Xue, F., Kumar, P.R.: The number of neighbors needed for connectivity of wireless networks. Wirel. Netw. 10, 169–181 (2004)

    Article  Google Scholar 

  79. Yule, G.U.: A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, F.R.S. Philos. Trans. R. Soc. B 213(402–410), 21–87 (1925)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Gábor Lugosi and Vasiliki Velona for bringing the topic to our attention and for discussions in an early stage of this paper. The authors would also like to thank Bas Lodewijks for a careful proofreading, and to David Aldous and Andrew Wade for bringing several additional references to our attention. The first author would like to thank Ivailo Hartarsky for a discussion around the connectivity of \(G_{\infty }\). We are also grateful for many useful comments and remarks by the two anonymous referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyuben Lichev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dieter Mitsche has been partially supported by grant Fondecyt Grant 1220174 and by Grant GrHyDy ANR-20-CE40-0002.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lichev, L., Mitsche, D. New results for the random nearest neighbor tree. Probab. Theory Relat. Fields (2024). https://doi.org/10.1007/s00440-024-01268-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00440-024-01268-2

Mathematics Subject Classification

Navigation