Skip to main content
Log in

Inhomogeneous exponential jump model

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We introduce and study the inhomogeneous exponential jump model—an integrable stochastic interacting particle system on the continuous half line evolving in continuous time. An important feature of the system is the presence of arbitrary spatial inhomogeneity on the half line which does not break the integrability. We completely characterize the macroscopic limit shape and asymptotic fluctuations of the height function (= integrated current) in the model. In particular, we explain how the presence of inhomogeneity may lead to macroscopic phase transitions in the limit shape such as shocks or traffic jams. Away from these singularities the asymptotic fluctuations of the height function around its macroscopic limit shape are governed by the GUE Tracy–Widom distribution. A surprising result is that while the limit shape is discontinuous at a traffic jam caused by a macroscopic slowdown in the inhomogeneity, fluctuations on both sides of such a traffic jam still have the GUE Tracy–Widom distribution (but with different non-universal normalizations). The integrability of the model comes from the fact that it is a degeneration of the inhomogeneous stochastic higher spin six vertex models studied earlier in Borodin and Petrov (Higher spin six vertex model and symmetric rational functions, doi:10.1007/s00029-016-0301-7, arXiv:1601.05770 [math.PR], 2016). Our results on fluctuations are obtained via an asymptotic analysis of Fredholm determinantal formulas arising from contour integral expressions for the q-moments in the stochastic higher spin six vertex model. We also discuss “product-form” translation invariant stationary distributions of the exponential jump model which lead to an alternative hydrodynamic-type heuristic derivation of the macroscopic limit shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. But not always: a notable open problem is to find an integrable structure in ASEP (a two-sided generalization of TASEP) with particle-dependent jump rates.

  2. Here and below we say that a certain event has rate \(\mu >0\) if it repeats after independent random time intervals which have exponential distribution with rate \(\mu \) (and mean \(\mu ^{-1}\)). That is, \(\mathbb {P}(\hbox {time between occurrences}>\Delta t) =e^{-\mu \Delta t}\). These independent exponentially distributed random times are also assumed independent from the rest of the system.

  3. By stationary we mean distributions which do not change under the corresponding stochastic evolution, and translation invariance means invariance under spatial translations of \(\mathbb {R}\).

  4. Though for \(\alpha =\upomega ^\circ _{\tau ,x}\) this roadblock changes the fluctuation distribution at \(x=\sigma \) from the GUE Tracy–Widom to a BBP one.

  5. Throughout the paper we use the q-Pochhammer symbol notation \((z;q)_{m}=\prod _{i=0}^{m-1}(1-zq^{i})\), \(m\in \mathbb {Z}_{\ge 0}\). Since \(0<q<1\) it makes sense for \(m=+\,\infty \), too.

  6. Here and below \(B,B_1,B_2,\ldots \) and \(c,c',c'',c_1,c_2,\ldots \) are positive constants which may depend on q, the parameters of the models, or the data in the formulation of the statements (such as the angle \(\varphi \), etc.).

  7. The change of variables in a neighborhood of \(\upomega ^\circ _{\tau ,x}\) introduces a scaling factor \({\uplambda }^{-\frac{2}{3}}(d^{\mathrm {TW}}_{\tau ,x})^{-2}\) coming from dz in the kernel itself and from the integrals over \(w,w'\), cf. (2.12). This scaling of the kernel is reflected in the notation \(\sqrt{dw\,dw'}\) which we will also use below in similar situations.

  8. The assumption that there are no roadblocks makes sense because we expect that \(\mathbf {X}^{\mathbb {R}}\) should describe local behavior under the inhomogeneous exponential jump model from Sect. 2.1, and roadblocks cannot accumulate locally.

References

  1. Aggarwal, A.: Current fluctuations of the stationary ASEP and six-vertex model (2016). arXiv:1608.04726 [math.PR]

  2. Aggarwal, A., Borodin, A.: Phase transitions in the ASEP and Stochastic six-vertex model (2016). arXiv:1607.08684 [math.PR]

  3. Andjel, E.: Invariant measures for the zero range process. Ann. Probab. 10(3), 525–547 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andjel, E., Kipnis, C.: Derivation of the hydrodynamical equation for the zerorange interaction process. Ann. Probab. 12(2), 325–334 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baik, J.: Painlevé formulas of the limiting distributions for nonnull complex sample covariance matrices. Duke Math J. 133(2), 205–235 (2006). arXiv:math/0504606 [math.PR]

    Article  MathSciNet  MATH  Google Scholar 

  6. Baik, J., Ben Arous, G., Péchée, S.: Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. Ann. Probab. 33(5), 1643–1697 (2005). arXiv:math/0403022 [math.PR]

    Article  MathSciNet  MATH  Google Scholar 

  7. Barraquand, G.: A phase transition for q-TASEP with a few slower particles. Stoch. Process. Appl. 125(7), 2674–2699 (2015). arXiv:1404.7409 [math.PR]

    Article  MathSciNet  MATH  Google Scholar 

  8. Barraquand, G., Corwin, I.: The \(q\)-Hahn asymmetric exclusion process. Ann. Appl. Probab. 26(4), 2304–2356 (2016). arXiv:1501.03445 [math.PR]

    Article  MathSciNet  MATH  Google Scholar 

  9. Basu, R., Sidoravicius, V., Sly, A.: Last passage percolation with a defect line and the solution of the slow bond problem (2014). arXiv:1408.3464 [math.PR]

  10. Baxter, R.: Exactly Solved Models in Statistical Mechanics. Courier Dover Publications, Mineola (2007)

    MATH  Google Scholar 

  11. Bengrine, M., Benyoussef, A., Ez-Zahraouy, H., Krug, J., Loulidi, M., Mhirech, F.: A simulation study of an asymmetric exclusion model with disorder. MJ Condens. Matter 2(1), 117–126 (1999)

    Google Scholar 

  12. Blank, M.: Exclusion-type spatially heterogeneous processes in continua. In: Jour. Stat. Mech. 2011.06 (2011). arXiv:1105.4232 [math.DS], P06016

  13. Blank, M.: Discrete time TASEP in heterogeneous continuum. Markov Process. Relat. Fields 18(3), 531–552 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Bornemann, F.: On the numerical evaluation of Fredholm determinants. Math. Comp. 79(270), 871–915 (2010). arXiv:0804.2543 [math.NA]

    Article  MathSciNet  MATH  Google Scholar 

  15. Borodin, A.: Stochastic higher spin six vertex model and Madconald measures (2016). arXiv:1608.01553 [math-ph]

  16. Borodin, A.: On a family of symmetric rational functions. Adv. Math. 306, 973–1018 (2017). arXiv:1410.0976 [math.CO]

    Article  MathSciNet  MATH  Google Scholar 

  17. Borodin, A., Bufetov, A., Wheeler, M.: Between the stochastic six vertex model and Hall-Littlewood processes (2016). arXiv:1611.09486 [math.PR]

  18. Borodin, A., Corwin, I.: Macdonald processes. Prob. Theory Relat. Fields 158, 225–400 (2014). arXiv:1111.4408 [math.PR]

    Article  MathSciNet  MATH  Google Scholar 

  19. Borodin, A., Corwin, I., Ferrari, P.: Free energy fluctuations for directed polymers in random media in \(1 + 1\) dimension. Commun. Pure Appl. Math. 67(7), 1129–1214 (2014). arXiv:1204.1024 [math.PR]

    Article  MathSciNet  MATH  Google Scholar 

  20. Borodin, A., Corwin, I., Gorin, V.: Stochastic six-vertex model. Duke J. Math. 165(3), 563–624 (2016). arXiv:1407.6729 [math.PR]

    Article  MathSciNet  MATH  Google Scholar 

  21. Borodin, A., Corwin, I., Petrov, L., Sasamoto, T.: Spectral theory for the q-Boson particle system. Compos. Math. 151(1), 1–67 (2015). arXiv:1308.3475 [mathph]

    Article  MathSciNet  MATH  Google Scholar 

  22. Borodin, A., Ferrari, P.: Anisotropic growth of random surfaces in 2+1 dimensions. Commun. Math. Phys. 325, 603–684 (2014). arXiv:0804.3035 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  23. Borodin, A., Ferrari, P., Sasamoto, T.: Two speed TASEP. J. Stat. Phys. 137(5), 936–977 (2009). arXiv:0904.4655 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  24. Borodin, A., Petrov, L.: Higher spin six vertex model and symmetric rational functions (2016). doi:10.1007/s00029-016-0301-7, arXiv:1601.05770 [math.PR]. (To appear in Selecta Mathematica, New Series)

  25. Borodin, A., Petrov, L.: Lectures on integrable probability: stochastic vertex models and symmetric functions (2016). arXiv:1605.01349 [math.PR]

  26. Corwin, I.: The Kardar–Parisi–Zhang equation and universality class. In: Random Matrices Theory Appl., vol 1 (2012). arXiv:1106.1596 [math.PR]

  27. Corwin, I., Petrov, L.: Stochastic higher spin vertex models on the line. Commun. Math. Phys. 343(2), 651–700 (2016). arXiv:1502.07374 [math.PR]

    Article  MathSciNet  MATH  Google Scholar 

  28. Costin, O., Lebowitz, J., Speer, E., Troiani, A.: The blockage problem. Bull. Inst. Math. Acad. Sin. (New Series) 8(1), 47–72 (2013). arXiv:1207.6555 [math-ph]

    MathSciNet  MATH  Google Scholar 

  29. Dong, J., Zia, R., Schmittmann, B.: Understanding the edge effect in TASEP with mean-field theoretic approaches. J. Phys. A 42(1), 015002 (2008). arXiv:0809.1974 [cond-mat.stat-mech]

    Article  MathSciNet  MATH  Google Scholar 

  30. Duits, M.: The Gaussian free field in an interlacing particle system with two jump rates. Commun. Pure Appl. Math. 66(4), 600–643 (2013). arXiv:1105.4656 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  31. Ferrari, P., Spohn, H.: Random growth models. In: Akemann, G., Baik, J., Di Francesco, P. (eds.) Oxford Handbook of Random Matrix Theory. Oxford University Press (2011). arXiv:1003.0881 [math.PR]

  32. Ferrari, P., Veto, B.: Tracy–Widom asymptotics for q-TASEP. Ann. Inst. H. Poincaré, Probabilités et Statistiques 51(4), 1465–1485 (2015). arXiv:1310.2515 [math.PR]

    Article  MathSciNet  MATH  Google Scholar 

  33. Gasper, G., Rahman, M.: Basic Hypergeometric Series. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  34. Georgiou, N., Kumar, R., Seppäläinen, T.: TASEP with discontinuous jump rates. ALEA Lat. Am. J. Probab. Math. Stat. 7, 293–318 (2010). arXiv:1003.3218 [math.PR]

    MathSciNet  MATH  Google Scholar 

  35. Ghosal, P.: Hall-Littlewood-PushTASEP and its KPZ limit (2017). arXiv:1701.07308 [math.PR]

  36. Gwa, L.-H., Spohn, H.: Six-vertex model, roughened surfaces, and an asymmetric spin Hamiltonian. Phys. Rev. Lett. 68(6), 725–728 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  37. Helbing, D.: Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73(4), 1067–1141 (2001). arXiv:cond-mat/0012229 [cond-mat.stat-mech]

    Article  Google Scholar 

  38. Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209(2), 437–476 (2000). arXiv:math/9903134 [math.CO]

    Article  MathSciNet  MATH  Google Scholar 

  39. Knizel, A., Petrov, L.: In preparation (2017)

  40. Krug, J.: Phase separation in disordered exclusion models. Braz. J. Phys. 30(1), 97–104 (2000). arXiv:cond-mat/9912411 [cond-mat.stat-mech]

    Article  MathSciNet  Google Scholar 

  41. Krug, J., Ferrari, P.A.: Phase transitions in driven diffusive systems with random rates. J. Phys. A Math. Gen. 29(18), L465 (1996)

    Article  MATH  Google Scholar 

  42. Kulish, P., Reshetikhin, N., Sklyanin, E.: Yang–Baxter equation and representation theory: I. Lett. Math. Phys. 5(5), 393–403 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  43. Landim, C.: Hydrodynamical limit for space inhomogeneous one-dimensional totally asymmetric zero-range processes. Ann. Probab. 24(2), 599–638 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  44. Liggett, T.: An infinite particle system with zero range interactions. Ann. Probab. 1(2), 240–253 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  45. Liggett, T.: Interacting Particle Systems. Springer, Berlin (2005)

    Book  MATH  Google Scholar 

  46. MacDonald, C., Gibbs, J., Pipkin, A.: Kinetics of biopolymerization on nucleic acid templates. Biopolymers 6(1), 1–25 (1968)

    Article  Google Scholar 

  47. Mangazeev, V.: On the Yang–Baxter equation for the six-vertex model. Nucl. Phys. B 882, 70–96 (2014). arXiv:1401.6494 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  48. Matetski, K., Quastel, J., Remenik, D.: The KPZ fixed point (2017). arXiv:1701.00018 [math.PR]

  49. Okounkov, A.: Infinite wedge and random partitions. Sel. Math. New Ser. 7(1), 57–81 (2001). arXiv:math/9907127 [math.RT]

    Article  MathSciNet  MATH  Google Scholar 

  50. Okounkov, A., Reshetikhin, N.: Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram. J. Am. Math. Soc. 16(3), 581–603 (2003). arXiv:math/0107056 [math.CO]

    Article  MathSciNet  MATH  Google Scholar 

  51. Orr, D., Petrov, L.: Stochastic higher spin six vertex model and \(q\)-TASEPs (2016). arXiv:1610.10080 [math.PR]

  52. Quastel, J., Spohn, H.: The one-dimensional KPZ equation and its universality class. J. Stat. Phys. 160(4), 965–984 (2015). arXiv:1503.06185 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  53. Rezakhanlou, F.: Hydrodynamic limit for attractive particle systems on \(\mathbb{Z}^{d}\). Commun. Math. Phys. 140(3), 417–448 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  54. Seppäläinen, T.: Existence of hydrodynamics for the totally asymmetric simple Kexclusion process. Ann. Probab. 27(1), 361–415 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  55. Seppäläinen, T.: Hydrodynamic profiles for the totally asymmetric exclusion process with a slow bond. J. Stat. Phys. 102(1–2), 69–96 (2001). arXiv:math/0003049 [math.PR]

    Article  MathSciNet  MATH  Google Scholar 

  56. Spitzer, F.: Interaction of Markov processes. Adv. Math. 5(2), 246–290 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  57. Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  58. Tracy, C., Widom, H.: Level-spacing distributions and the Airy kernel. In: Comm. Math. Phys. 159.1, pp. 151–174 (1994). arXiv:hep-th/9211141, issn: 0010-3616

  59. Tracy, C., Widom, H.: Asymptotics in ASEP with step initial condition. Commun. Math. Phys. 290, 129–154 (2009). arXiv:0807.1713 [math.PR]

    Article  MathSciNet  MATH  Google Scholar 

  60. Tracy, C., Widom, H.: On ASEP with step Bernoulli initial condition. J. Stat. Phys. 137, 825–838 (2009). arXiv:0907.5192 [math.PR]

    Article  MathSciNet  MATH  Google Scholar 

  61. Veto, B.: Tracy–Widom limit of q-Hahn TASEP. Electronic Journal of Probability 20(102), 22 (2015). arXiv:1407.2787 [math.PR]

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to discussions with Guillaume Barraquand, Ivan Corwin, Michael Blank, Tomohiro Sasamoto, Herbert Spohn, Kazumasa Takeuchi, and Jon Warren. The research was carried out in part during the authors’ participation in the Kavli Institute for Theoretical Physics program “New approaches to non-equilibrium and random systems: KPZ integrability, universality, applications and experiments”, and consequently was partially supported by the National Science Foundation PHY11-25915. A. B. is supported by the National Science Foundation grant DMS-1607901 and by Fellowships of the Radcliffe Institute for Advanced Study and the Simons Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Petrov.

Appendices

Appendix A: q-polygamma functions

Here we list a number of formulas related to the q-gamma and q-polygamma functions which are used throughout the paper. The q-gamma function is defined by (we always assume \(q\in (0,1)\))

$$\begin{aligned} \Gamma _q(z) := (1-q)^{1-z} \frac{(q;q)_{\infty }}{(q^z;q)_{\infty }}. \end{aligned}$$

We have \(\lim _{q\nearrow 1}\Gamma _q(z)=\Gamma (z)\). The log-derivative of \(\Gamma _q(z)\) (the q-digamma function) is denoted by

$$\begin{aligned} \psi _q(z) := \frac{1}{\Gamma _q(z)}\frac{\partial \Gamma _q(z)}{\partial z}. \end{aligned}$$

It is straightforward that

$$\begin{aligned} \psi _q(z) = -\log (1-q) + \log q \sum _{k=0}^{\infty } \frac{q^{k+z}}{1-q^{k+z}}, \end{aligned}$$
(A.1)

which is a meromorphic function in z having poles when \(q^{z+k}=1\) (and the series converges for any z except these poles thanks to the factors \(q^k\)).

The following formula is an alternative series representation for derivatives of \(\psi _q(z)\) (the so-called q-polygamma functions):

$$\begin{aligned} \psi _q^{(n)}(z) = (\log q)^{n+1} \sum _{k=1}^{\infty } \frac{k^n q^{kz}}{1-q^k}, \qquad n\ge 1, \end{aligned}$$
(A.2)

e.g., see [8, Lemma 2.1] for the computation. In contrast with (A.1), this series converges only when \(|q^{z}|<1\), i.e., when \(\mathop {\mathrm {Re}}z>0\).

It is convenient to replace \(q^{z}\) by w, and define for any \(n\ge 0\):

$$\begin{aligned} \phi _{n}(w):=\sum _{k=1}^{\infty } \frac{k^n w^{k}}{1-q^k},\qquad |w|<1. \end{aligned}$$
(A.3)

We thus have

$$\begin{aligned} \phi _{n}(w) = \frac{\log (1-q)}{\log q}\,\mathbf {1}_{n=0} + \frac{1}{(\log q)^{n+1}}\psi _q^{(n)}(\log _{q}w),\qquad n\ge 0. \end{aligned}$$
(A.4)

The latter formula gives an analytic continuation of the series (A.3) to a meromorphic function of \(w\in \mathbb {C}\) having poles of order \(n+1\) at \(w=q^{-k}\), \(k\in \mathbb {Z}_{\ge 0}\).

Several useful properties of the functions \(\phi _n\) are summarized below:

Proposition A.1

We have

$$\begin{aligned} \frac{\partial }{\partial w}\phi _{n}(w)=\frac{1}{w}\phi _{n+1}(w),\qquad n\ge 0. \end{aligned}$$
(A.5)

The functions \(\phi _{0}(w)\) and \(\phi _{1}(w)\) are negative for negative real w, and \(\phi _{1}(w)\) and \(\phi _{3}(w)\) are positive for positive real \(w\notin q^{\mathbb {Z}_{\le 0}}\), while \(\phi _{2}(w)\) is positive for \(w\in (0,1)\). Moreover, \(\phi _{n}(0)=0\) for all n.

Proof

The claim about the derivatives is straightforward from either (A.3) or (A.4). To check the signs of the \(\phi _n\)’s, let us use the series (A.1) and its derivatives to get formulas for \(\phi _n(w)\) valid for all w. We have

$$\begin{aligned} \phi _{0}(w)&= \sum _{k = 0}^{\infty }\frac{q^kw}{1-q^kw},\qquad \phi _{1}(w) = \sum _{k = 0}^{\infty }\frac{q^kw}{(1-q^kw)^{2}}, \end{aligned}$$
(A.6)
$$\begin{aligned} \phi _{2}(w)&= \sum _{k = 0}^{\infty }\frac{q^{k}w(1+q^{k}w)}{(1-q^kw)^{3}},\qquad \phi _{3}(w) = \sum _{k = 0}^{\infty }\frac{q^kw (1+4 q^kw +q^{2 k}w^2 )}{(1-q^kw)^4}. \end{aligned}$$
(A.7)

This immediately implies all the remaining claims. \(\square \)

Appendix B: Translation invariant stationary distributions

1.1 B.1 Preliminaries

Here we perform computations related to translation invariant stationary distributions of homogeneous versions of our particle systems on the whole (discrete or continuous) line. Classification of translation invariant stationary distributions for rather general zero range processes (in the sense of [56]) on \(\mathbb {Z}\) is well-known, e.g., see [3]. In particular, under mild conditions on the process every translation invariant stationary distribution is a mixture of product measures. Here by a product measure we mean assigning random independent identically distributed numbers of particles at each location in \(\mathbb {Z}\) (such a random configuration is clearly translation invariant).

While neither the half-continuous stochastic higher spin six vertex model nor the exponential jump model are zero range, the existence (for suitable initial configurations) of these processes on \(\mathbb {Z}\) and \(\mathbb {R}\), respectively, can be established similarly to [3, 44]. The main observation is that our process on \(\mathbb {Z}\) (denote it by \(\mathbf {X}_{\mathrm {hc}}^{\mathbb {Z}}(t)\)) is “slower” than the zero range process (with the geometric jumping distribution) obtained by dropping the interaction of the flying particles with the sitting ones. In the case of the continuous space, our process (denote it by \(\mathbf {X}^{\mathbb {R}}(t)\)) is “slower” than simply the process of independent particles each of which jumps to the right by an exponentially distributed random distance after exponentially distributed time intervals. Therefore, to show the existence of both \(\mathbf {X}_{\mathrm {hc}}^{\mathbb {Z}}\) and \(\mathbf {X}^{\mathbb {R}}\) one can essentially repeat the estimates of [44] or [3] (with suitable modifications in the case of the continuous space). This also implies that product measures on \(\mathbb {Z}\) or their analogues on \(\mathbb {R}\), marked Poisson processes (see Definition B.2 below), can serve as (random) initial configurations for \(\mathbf {X}_{\mathrm {hc}}^{\mathbb {Z}}\) and \(\mathbf {X}^{\mathbb {R}}\), respectively, provided that the random number of points at a single location has, say, two finite first moments.

Here we do not attempt to classify all translation invariant stationary distributions of \(\mathbf {X}_{\mathrm {hc}}^{\mathbb {Z}}\) and \(\mathbf {X}^{\mathbb {R}}\), but instead show that certain specific product measures or marked Poisson processes are indeed stationary under our systems. We also obtain formulas for particle density and particle current (sometimes also called particle flux) for these measures which (in the case of \(\mathbf {X}^{\mathbb {R}}\)) are employed in the heuristic derivation of the macroscopic limit shape for the height function in Sect. 2.2 ( based on the assumption that these measures describe local behavior of the inhomogeneous exponential jump model).

1.2 B.2 Stationary distributions for half-continuous vertex model

Let \(\mathbf {X}_{\mathrm {hc}}^{\mathbb {Z}}(t)\) be the homogeneous version of the half-continuous stochastic higher spin six vertex model (described in Sect. 3.3) which is well-defined on a suitable subset of \(\mathrm {Conf}_{\bullet }^{\sim }(\mathbb {Z})\), the space of possibly countably infinite particle configurations in \(\mathbb {Z}\) with multiple (but finitely many) particles per location allowed. This process depends on parameters \(\upxi _i\equiv \upxi >0\) and \(\mathsf {s}_i\equiv \mathsf {s}\in (-1,0)\).

For any \(c\ge 0\), let \({\varvec{\upvarphi }}^{\mathrm {hc}}_{c,\mathsf {s}^2}\) be the probability distribution on \(\left\{ 0,1,2,\ldots \right\} \) defined as

$$\begin{aligned} {\varvec{\upvarphi }}^{\mathrm {hc}}_{c,\mathsf {s}^2}(j) := c^j\frac{(\mathsf {s}^2;q)_j}{(q;q)_j} \frac{(c;q)_{\infty }}{(c\mathsf {s}^2;q)_{\infty }} ,\qquad j\ge 0. \end{aligned}$$
(B.1)

The fact that these quantities sum to one follows from the q-binomial theorem [33, (1.3.2)]. When \(\mathsf {s}=0\), \({\varvec{\upvarphi }}^{\mathrm {hc}}_{c,\mathsf {s}^2}\) turns into the distribution \((c;q)_{\infty }c^j/(q;q)_j\) which is often called the q-geometric distribution. The latter in turn becomes the usual geometric distribution \((1-c)c^j\) when \(q=0\).

Let \({\mathfrak {m}}^{\mathrm {hc}}_{c,\mathsf {s}^2}=({\varvec{\upvarphi }}^{\mathrm {hc}}_{c,\mathsf {s}^2})^{\otimes \mathbb {Z}}\) be the product probability measure on \(\left\{ 0,1,2,\ldots \right\} ^{\mathbb {Z}}\) corresponding to the number of particles at each location distributed as \({\varvec{\upvarphi }}^{\mathrm {hc}}_{c,\mathsf {s}^2}\), all of them being independent.

Proposition B.1

For any \(c\ge 0\), the measure \({\mathfrak {m}}^{\mathrm {hc}}_{c,\mathsf {s}^2}\) on \(\mathrm {Conf}_{\bullet }^{\sim }(\mathbb {Z})\) is stationary under the process \(\mathbf {X}_{\mathrm {hc}}^{\mathbb {Z}}(t)\) with the matching parameter \(\mathsf {s}\) and arbitrary \(\upxi \).

Proof

It suffices to consider the evolution of the distribution of the number of particles at a given location in \(\mathbb {Z}\). If there are \(k\ge 0\) particles at this location, then one particle leaves it at rate

$$\begin{aligned} {\mathrm {Rate}}(k\rightarrow k-1)=-\upxi \mathsf {s}(1-q^k). \end{aligned}$$

Let us compute \({\mathrm {Rate}}(k\rightarrow k+1)\). Let \(Y^{\mathrm {hc}},Y_1^{\mathrm {hc}},Y_2^{\mathrm {hc}},\ldots \) be independent random variables distributed as \({\varvec{\upvarphi }}^{\mathrm {hc}}_{c,\mathsf {s}^2}\). The rate at which a particle joins a stack of k particles has the following form:

(B.2)

One readily sees that

$$\begin{aligned} {\mathbb {E}}q^{Y^{\mathrm {hc}}} = \sum _{j=0}^{\infty }(cq)^j \frac{(q;q)_j}{(\mathsf {s^2};q)_j} \frac{(c;q)_{\infty }}{(c\mathsf {s}^2;q)_{\infty }} = \frac{(cq\mathsf {s}^2;q)_{\infty }}{(cq;q)_{\infty }} \frac{(c;q)_{\infty }}{(c\mathsf {s}^2;q)_{\infty }} = \frac{1-c}{1-c\mathsf {s}^2}, \end{aligned}$$

and thus the sum in (B.2) simplifies to

$$\begin{aligned} {\mathrm {Rate}}(k\rightarrow k+1) = -\upxi \mathsf {s}c(1-\mathsf {s}^2q^k). \end{aligned}$$

The desired stationarity now follows from the identity which can be readily verified:

$$\begin{aligned}&\left( {\varvec{\upvarphi }}^{\mathrm {hc}}_{c,\mathsf {s}^2}(k-1) - {\varvec{\upvarphi }}^{\mathrm {hc}}_{c,\mathsf {s}^2}(k) \right) {\mathrm {Rate}}(k-1\rightarrow k) \\&\quad + \left( {\varvec{\upvarphi }}^{\mathrm {hc}}_{c,\mathsf {s}^2}(k+1) - {\varvec{\upvarphi }}^{\mathrm {hc}}_{c,\mathsf {s}^2}(k) \right) {\mathrm {Rate}}(k+1\rightarrow k)=0 \end{aligned}$$

( if \(k=0\), then by agreement \( {\mathrm {Rate}}(0\rightarrow -1) = {\mathrm {Rate}}(-1\rightarrow 0) = 0 \)). \(\square \)

Let us now compute the particle density \({\rho }^{\mathrm {hc}}(c)\) and the particle current \({\jmath }^{\mathrm {hc}}(c)\) associated with the product measure \({\mathfrak {m}}^{\mathrm {hc}}_{c,\mathsf {s}^2}\) (a similar computation appears in [61]). The particle current is the average number of particles jumping over any given location per unit time. This quantity is given by the sum in the right-hand side of (B.2) without the last factor \((1-\mathsf {s}^2q^k)\), and hence

$$\begin{aligned} {\jmath }^{\mathrm {hc}}(c)=-\upxi \mathsf {s}c. \end{aligned}$$

The particle density is the average number of particles per location, it is equal to

$$\begin{aligned} {\rho }^{\mathrm {hc}}(c)= & {} \mathbb {E}\,({Y^{\mathrm {hc}}}) = \sum _{j=0}^{\infty } j c^j\frac{(\mathsf {s}^2;q)_j}{(q;q)_j} \frac{(c;q)_{\infty }}{(c\mathsf {s}^2;q)_{\infty }} = \frac{(c;q)_{\infty }}{(c\mathsf {s}^2;q)_{\infty }} \, c\frac{\partial }{\partial c} \left( \frac{(c\mathsf {s}^2;q)_{\infty }}{(c;q)_{\infty }} \right) \\= & {} \frac{c\frac{\partial }{\partial c}(c\mathsf {s}^2;q)_{\infty }}{(c\mathsf {s}^2;q)_{\infty }} - \frac{c\frac{\partial }{\partial c}(c;q)_{\infty }}{(c;q)_{\infty }} = \sum _{i=0}^{\infty }\frac{-c\mathsf {s}^2q^i}{1-c\mathsf {s}^2q^i} + \sum _{i=0}^{\infty }\frac{cq^i}{1-cq^i} \\= & {} \phi _0(c)-\phi _0(c\mathsf {s}^2), \end{aligned}$$

where in the last equality we used (A.6). We will not further pursue formulas for the discrete model, and instead in the next two subsections turn to the exponential jump model as it is the main object of the present paper.

1.3 B.3 Stationary distributions for the exponential jump model

The homogeneous exponential jump model \(\mathbf {X}^{\mathbb {R}}(t)\) on the whole line depends on parameters \({\varvec{\upxi }}(x)\equiv {\varvec{\upxi }}>0\) and \({\uplambda }>0\), and we assume that there are no roadblocks.Footnote 8 We will use the following analogue of product measures on the continuous line:

Definition B.2

A marked Poisson process with marks following a probability distribution \({\varvec{\upvarphi }}\) on \(\mathbb {Z}_{\ge 1}\) is a probability measure on \(\mathrm {Conf}_{\bullet }^{\sim }(\mathbb {R})\) (i.e., a random particle configuration in \(\mathbb {R}\)) obtained as follows. Take a (homogeneous) Poisson process on \(\mathbb {R}\) with some rate \(\mu >0\), and at each point of this Poisson process put a random number of particles according to the distribution \({\varvec{\upvarphi }}\) on \(\mathbb {Z}_{\ge 1}\), independently for each point of the Poisson process.

As explained in Sect. 3.4, the exponential jump model arises from the half-continuous vertex model as \(\mathsf {s}^2=e^{- {\uplambda }\varepsilon }\rightarrow 1\), \(-\upxi \mathsf {s}={\varvec{\upxi }}\) is fixed, and the discrete space is rescaled by \(\varepsilon \) to become continuous. In this limit regime the distribution \({\varvec{\upvarphi }}^{\mathrm {hc}}_{c,\mathsf {s}^2}\) (B.1) behaves as follows:

$$\begin{aligned} {\varvec{\upvarphi }}^{\mathrm {hc}}_{c,\mathsf {s}^2}(0) = \frac{(c;q)_{\infty }}{(ce^{- {\uplambda }\varepsilon };q)_{\infty }} = \exp \biggl \{ \sum _{i=0}^{\infty } (-\varepsilon {\uplambda })\frac{c q^i}{1-c q^i}+O(\varepsilon ^2) \biggr \} = 1-\varepsilon {\uplambda }\phi _0(c)+O(\varepsilon ^2), \end{aligned}$$

and for any \(j\ge 1\) we have

$$\begin{aligned} {\varvec{\upvarphi }}^{\mathrm {hc}}_{c,\mathsf {s}^2}\bigl (j\mid j\ge 1\bigr )= & {} c^j\frac{(e^{- {\uplambda }\varepsilon };q)_j}{(q;q)_j} \frac{1}{\frac{(ce^{- {\uplambda }\varepsilon };q)_\infty }{(c;q)_{\infty }}-1} \\= & {} c^j\frac{(1-e^{- {\uplambda }\varepsilon })}{\varepsilon {\uplambda }\phi _0(c)+O(\varepsilon ^2)} \frac{(qe^{- {\uplambda }\varepsilon };q)_{j-1}}{(q;q)_j} \rightarrow \frac{1}{\phi _0(c)}\frac{c^j}{1-q^j}. \end{aligned}$$

In other words, the product measure \({\mathfrak {m}}^{\mathrm {hc}}_{c,\mathsf {s}^2}\) from “Appendix B.2” turns into a marked Poisson process with rate \({\uplambda }\phi _0(c)\) and marking distribution

$$\begin{aligned} {\varvec{\upvarphi }}_{c}(j) := \frac{1}{\phi _0(c)}\frac{c^j}{1-q^j},\qquad j\ge 1. \end{aligned}$$
(B.3)

Denote this marked Poisson process by \(\mathfrak {m}_{c,{\uplambda }}\).

Proposition B.3

For any \(c\ge 0\) the measure \(\mathfrak {m}_{c,{\uplambda }}\) on \(\mathrm {Conf}_{\bullet }^{\sim }(\mathbb {R})\) is stationary under the process \(\mathbf {X}^{\mathbb {R}}(t)\) with the matching parameter \({\uplambda }\) and arbitrary parameter \({\varvec{\upxi }}\).

Proof

The proof is a continuous space modification of the one of Proposition B.1. However, as the continuous space computations are somewhat more involved, let us give some details. Fix \(x\in \mathbb {R}\), and consider the evolution of the distribution of the number of particles in \((x,x+dx)\). First, if there are \(k\ge 1\) particles there, then the rate at which one particle leaves is

$$\begin{aligned} {\mathrm {Rate}}(k\rightarrow k-1)=(1-q^k){\varvec{\upxi }}. \end{aligned}$$

Let \(Y,Y_1,Y_2,\ldots \) be independent random variables distributed as \({\varvec{\upvarphi }}_{c}\), and also let \(x>p_1>p_2>\ldots \) be all points of the Poisson process of rate \({\uplambda }\phi _0(c)\) to the left of our x. We have, similarly to (B.2):

(B.4)

The last factor \(1-q^k e^{- {\uplambda }dx}\) serves two cases: for \(k=0\), the probability that the flying particle stops in \((x,x+dx)\) is \({\uplambda }dx+O(dx^2)\) (which is small), while for \(k\ge 1\) it is \(1-q^k+O(dx)\). We have

$$\begin{aligned} {\mathbb {E}}q^{Y} = \frac{1}{\phi _0(c)}\sum _{j=1}^{\infty }\frac{(cq)^j}{1-q^j} = \frac{\phi _0(cq)}{\phi _0(c)} = 1-\frac{c}{(1-c)\phi _0(c)}, \end{aligned}$$

where in the last equality we used (A.6). Next, observe that \(x-p_i\) is a sum of i independent exponential random variables with parameter \({\uplambda }\phi _0(c)\) (denote one such variable by \(Y'\) ), and so

$$\begin{aligned} {\mathbb {E}}e^{- {\uplambda }(x-p_i)} = \left( {\mathbb {E}}e^{- {\uplambda }Y'} \right) ^i = \left( \frac{\phi _0(c)}{1+\phi _0(c)} \right) ^i. \end{aligned}$$

Thus, (B.4) turns into

$$\begin{aligned} {\mathrm {Rate}}(k\rightarrow k+1)= & {} {\varvec{\upxi }}\frac{ c (1-q^k e^{- {\uplambda }dx}) }{(1-c)\phi _0(c)} \sum _{i=1}^{\infty } \left( \frac{\phi _0(c)}{1+\phi _0(c)} \right) ^i \left( 1-\frac{c}{(1-c)\phi _0(c)} \right) ^{i-1} \\= & {} {\varvec{\upxi }}c (1-q^k e^{- {\uplambda }dx}). \end{aligned}$$

The desired stationarity follows from the identities

$$\begin{aligned} k=0:\qquad&\displaystyle -e^{- {\uplambda }\phi _0(c) dx}{\varvec{\upxi }}c(1-e^{- {\uplambda }dx}) + (1-e^{- {\uplambda }\phi _0(c) dx})\frac{c}{(1-q)\phi _0(c)}(1-q){\varvec{\upxi }}\\&\quad =O(dx^2) ;\\ k=1:\qquad&\displaystyle -(1-e^{- {\uplambda }\phi _0(c) dx})\frac{c}{(1-q)\phi _0(c)} \bigl [ {\varvec{\upxi }}c(1-q e^{- {\uplambda }dx}) + (1-q){\varvec{\upxi }}\bigr ]\\&\displaystyle \quad + (1-e^{- {\uplambda }\phi _0(c) dx})\frac{c^{2}}{(1-q^{2})\phi _0(c)}(1-q^{2}){\varvec{\upxi }}\\&\displaystyle \quad + e^{- {\uplambda }\phi _0(c)dx}{\varvec{\upxi }}c(1-e^{- {\uplambda }dx})=O(dx^2) ;\\ k\ge 2:\qquad&\displaystyle -(1-e^{- {\uplambda }\phi _0(c) dx})\frac{c^k}{(1-q^k)\phi _0(c)} \bigl [ {\varvec{\upxi }}c(1-q^k e^{- {\uplambda }dx}) + (1-q^k){\varvec{\upxi }}\bigr ]\\&\displaystyle \quad + (1-e^{- {\uplambda }\phi _0(c) dx})\frac{c^{k+1}}{(1-q^{k+1})\phi _0(c)}(1-q^{k+1}){\varvec{\upxi }}\\&\displaystyle \quad + (1-e^{- {\uplambda }\phi _0(c) dx})\frac{c^{k-1}}{(1-q^{k-1})\phi _0(c)}{\varvec{\upxi }}c(1-q^{k-1}e^{- {\uplambda }dx}) =O(dx^2), \end{aligned}$$

which are readily verified. \(\square \)

Let us now write down the particle density \(\rho (c)\) and the particle current j(c) under the measure \(\mathfrak {m}_{c,{\uplambda }}\). We have

$$\begin{aligned} \rho (c) = {\uplambda }\phi _0(c)\,{\mathbb {E}}\,(Y) = {\uplambda }\sum _{j=1}^{\infty }\frac{jc^j}{1-q^j} = {\uplambda }c\frac{\partial }{\partial c}\phi _0(c) = {\uplambda }\phi _1(c), \end{aligned}$$
(B.5)

where we employed (A.5). The particle current is given by the sum in the right-hand side of (B.4) without the last factor \(1-q^k e^{- {\uplambda }dx}\), and so is equal to

$$\begin{aligned} j(c)={\varvec{\upxi }}c. \end{aligned}$$
(B.6)

From Proposition A.1 it readily follows that \(\phi _1:[0,1]\rightarrow [0,+\infty ]\) is one to one and increasing. Let \(\phi _1^{-1}\) denote the inverse. From (B.5) and (B.6) we see that the dependence of the current on the density is

$$\begin{aligned} j(\rho )={\varvec{\upxi }}\phi _1^{-1}(\rho /{\uplambda }). \end{aligned}$$
(B.7)

1.4 B.4 Verification of the macroscopic limit shape

Recall the inhomogeneous exponential jump model on \(\mathbb {R}_{>0}\) defined in Sect. 2.1 depending on the speed function \({\varvec{\upxi }}(x)\) and the jump distance parameter \({\uplambda }>0\). Let us assume that there are no roadblocks, and, moreover, that \({\varvec{\upxi }}(x)\) is continuous at \(x=0\). Let us take a slightly more general model in which \({\uplambda }\) also depends on the location \(x\in \mathbb {R}_{>0}\) as \(\tilde{\uplambda }(x)L\), where L is a large parameter and \(\tilde{\uplambda }(x)\) is a positive continuous function bounded away from zero and infinity. We also rescale the continuous time as \(t=\tau L\).

Assume that in the limit as \(L\rightarrow +\infty \) there is a limiting density of particles \(\rho (\tau ,x)\in [0,+\infty ]\). Moreover, assume that locally at each \(x\in \mathbb {R}_{>0}\) where \(\rho (\tau ,x)< +\infty \) the behavior of the particle system is described by the translation invariant stationary distribution \(\mathfrak {m}_{c,\tilde{\uplambda }(x)}\) defined in “Appendix B.3”. Under these assumptions and using (B.7), one naturally expects (following the hydrodynamic treatment of driven interacting particle systems in, e.g., [4, 34, 43, 53] ) that the limiting density satisfies the following partial differential equation:

$$\begin{aligned} \frac{\partial }{\partial \tau }\rho (\tau ,x) + \frac{\partial }{\partial x} \Bigl [ {\varvec{\upxi }}(x)\phi _1^{-1}\bigl (\rho (\tau ,x)/\tilde{\uplambda }(x)\bigr ) \Bigr ]=0, \end{aligned}$$
(B.8)

with the initial condition \(\rho (0,x)=0\) (\(x>0\)) and the boundary condition \(\rho (\tau ,0)=+\infty \) (\(\tau \ge 0\)).

Remark B.4

The case \(\tilde{\uplambda }(x)\equiv 1\) considered in the main part of the paper does not restrict the generality. Indeed, let \(\Lambda (x):=\int _0^x {\uplambda }(u)du\). This is a strictly increasing function, and let \(\Lambda ^{-1}\) denote its inverse. If \(\rho (\tau ,x)\) satisfies (B.8) then a straightforward computation shows that

$$\begin{aligned} \check{\rho }(\tau ,y):=\frac{\rho (\tau ,\Lambda ^{-1}(y))}{{\uplambda }(\Lambda ^{-1}(y))} \end{aligned}$$

satisfies the same Eq. (B.8) in the variables \((\tau ,y)\), with \(\tilde{\uplambda }\) replaced by 1, and with the modified speed function \(\check{\varvec{\upxi }}(y):={\varvec{\upxi }}(\Lambda ^{-1}(y))\).

By virtue of Remark B.4, we assume that \(\tilde{\uplambda }(x)\equiv 1\), and consider the following equation for the density:

$$\begin{aligned} \frac{\partial }{\partial \tau }\rho (\tau ,x) + \frac{\partial }{\partial x} \Bigl [ {\varvec{\upxi }}(x)\phi _1^{-1}\bigl (\rho (\tau ,x)\bigr ) \Bigr ]=0, \end{aligned}$$
(B.9)

with initial condition \(\rho (0,x)=0\) (\(x>0\)) and boundary condition \(\rho (\tau ,0)=+\infty \) (\(\tau \ge 0\)).

Let us verify that the limiting density coming from the asymptotic analysis of the Fredholm determinant in Sect. 4 satisfies (B.9). Recall that in the absence of roadblocks the macroscopic limit shape \(\mathscr {H}(\tau ,x)\) for the height function is given as follows. First, let \(x_e=x_e(\tau )\ge 0\) be the edge point, i.e., the unique solution to \(\tau =\int _{0}^{x_e}\frac{dy}{(1-q){\varvec{\upxi }}(y)}\). Let also \(w=\upomega ^{\circ }_{\tau ,x}\) for \(0<x<x_e\) be the root of \(\tau w=\int _0^x\phi _2\bigl (w/{\varvec{\upxi }}(y)\bigr )dy\) on the segment \(\bigl (0,\mathop {\mathrm {ess\,inf}}_{y\in [0,x)}{\varvec{\upxi }}(y)\bigr )\) (by Proposition 2.5 this root exists and is unique). The limit shape is

$$\begin{aligned} \mathscr {H}(\tau ,x) = {\left\{ \begin{array}{ll} \displaystyle \tau \upomega ^{\circ }_{\tau ,x} -\int _0^x \phi _1\bigl (\upomega ^{\circ }_{\tau ,x}/{\varvec{\upxi }}(y)\bigr )dy, &{} 0<x<x_e; \\ 0, &{} x\ge x_e. \end{array}\right. } \end{aligned}$$

Proposition B.5

The density defined as \(\rho (\tau ,x):=-\frac{\partial }{\partial x}\mathscr {H}(\tau ,x)\) satisfies equation (B.9) (whenever all derivatives involved make sense).

Proof

Assume that \(0<x<x_e(\tau )\), otherwise the density is zero and thus trivially satisfies the equation. Differentiating \(\mathscr {H}(\tau ,x)\) in \(\tau \) and x and using Proposition A.1 together with the definition of \(\upomega ^{\circ }_{\tau ,x}\), we obtain

$$\begin{aligned} \frac{\partial }{\partial \tau }\mathscr {H}(\tau ,x)&= \upomega ^\circ _{\tau ,x}+\tau \frac{\partial \upomega ^\circ _{\tau ,x}}{\partial \tau } - \frac{1}{\upomega ^\circ _{\tau ,x}}\frac{\partial \upomega ^\circ _{\tau ,x}}{\partial \tau } \int _0^x\phi _2\bigl (\upomega ^{\circ }_{\tau ,x}/{\varvec{\upxi }}(y)\bigr )dy=\upomega ^{\circ }_{\tau ,x};\\ \frac{\partial }{\partial x}\mathscr {H}(\tau ,x)&= \tau \frac{\partial \upomega ^{\circ }_{\tau ,x}}{\partial x} - \phi _1\bigl (\upomega ^{\circ }_{\tau ,x}/{\varvec{\upxi }}(x)\bigr ) - \frac{1}{\upomega ^{\circ }_{\tau ,x}} \frac{\partial \upomega ^{\circ }_{\tau ,x}}{\partial x} \int _0^x\phi _2\bigl (\upomega ^{\circ }_{\tau ,x}/{\varvec{\upxi }}(y)\bigr )dy \\&= - \phi _1\bigl (\upomega ^{\circ }_{\tau ,x}/{\varvec{\upxi }}(x)\bigr ). \end{aligned}$$

Therefore, we can write

$$\begin{aligned} \rho (\tau ,x) = - \frac{\partial \mathscr {H}(\tau ,x)}{\partial x} = \phi _1(\upomega ^{\circ }_{\tau ,x}/{\varvec{\upxi }}(x)) = \phi _1\left( \frac{1}{{\varvec{\upxi }}(x)} \frac{\partial \mathscr {H}(\tau ,x)}{\partial \tau }\right) , \end{aligned}$$

or, inverting \(\phi _1\):

$$\begin{aligned} \frac{\partial \mathscr {H}(\tau ,x)}{\partial \tau } = {\varvec{\upxi }}(x)\phi _1^{-1}\bigl (\rho (\tau ,x)\bigr ). \end{aligned}$$

Differentiating the last equality in x we arrive at Eq. (B.9) for \(\rho (\tau ,x)\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borodin, A., Petrov, L. Inhomogeneous exponential jump model. Probab. Theory Relat. Fields 172, 323–385 (2018). https://doi.org/10.1007/s00440-017-0810-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-017-0810-0

Mathematics Subject Classification

Navigation