Skip to main content
Log in

Replication of a rare risk haplotype on 1p36.33 for autism spectrum disorder

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Hundreds of genes have been implicated in autism spectrum disorders (ASDs). In genetically heterogeneous conditions, large families with multiple affected individuals provide strong evidence implicating a rare variant, and replication of the same variant in multiple families is unusual. We previously published linkage analyses and follow-up exome sequencing in seven large families with ASDs, implicating 14 rare exome variants. These included rs200195897, which was transmitted to four affected individuals in one family. We attempted replication of those variants in the MSSNG database. MSSNG is a unique resource for replication of ASD risk loci, containing whole genome sequence (WGS) on thousands of individuals diagnosed with ASDs and family members. For each exome variant, we obtained all carriers and their relatives in MSSNG, using a TDT test to quantify evidence for transmission and association. We replicated the transmission of rs200195897 to four affected individuals in three additional families. rs200195897 was also present in three singleton affected individuals, and no unaffected individuals other than transmitting parents. We identified two additional rare variants (rs566472488 and rs185038034) transmitted with rs200195897 on 1p36.33. Sanger sequencing confirmed the presence of these variants in the original family segregating rs200195897. To our knowledge, this is the first example of a rare haplotype being transmitted with ASD in multiple families. The candidate risk variants include a missense mutation in SAMD11, an intronic variant in NOC2L, and a regulatory region variant close to both genes. NOC2L is a transcription repressor, and several genes involved in transcription regulation have been previously associated with ASDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Altshuler DM, Durbin RM, Abecasis GR, Bentley DR, Chakravarti A et al (2015) A global reference for human genetic variation. Nature 526:68

    Article  CAS  Google Scholar 

  • American Psychiatric Association (2013) Diagnostic and statistical manual, 5th edn. American Psychiatric Association, Washington, DC

    Google Scholar 

  • Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U et al (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185–188

    Article  CAS  PubMed  Google Scholar 

  • Baio J, Wiggins L, Christensen DL, Maenner MJ, Daniels J et al (2018) Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR 67(1):564–564

    Google Scholar 

  • Ben-David E, Shifman S (2013) Combined analysis of exome sequencing points toward a major role for transcription regulation during brain development in autism. Mol Psychiatry 18:1054–1056

    Article  CAS  PubMed  Google Scholar 

  • Berg JM, Geschwind DH (2012) Autism genetics: searching for specificity and convergence. Genome Biol 13:247

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernier R, Gerdts J, Munson J, Dawson G, Estes A (2012) Evidence for broader autism phenotype characteristics in parents from multiple-incidence autism families. Autism Res 5:13–20

    Article  PubMed  Google Scholar 

  • Bernier R, Golzio C, Xiong B, Stessman HA, Coe BP et al (2014) Disruptive CHD8 mutations define a subtype of autism early in development. Cell 158:263–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolton PF, Carcani-Rathwell I, Hutton J, Goode S, Howlin P et al (2011) Epilepsy in autism: features and correlates. Br J Psychiatry 198:289–294

    Article  PubMed  PubMed Central  Google Scholar 

  • Brunham LR, Hayden MR (2013) Hunting human disease genes: lessons from the past, challenges for the future. Hum Genet 132:603–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buescher AV, Cidav Z, Knapp M, Mandell DS (2014) Costs of autism spectrum disorders in the United Kingdom and the United States. JAMA Pediatr 168:721–728

    Article  PubMed  Google Scholar 

  • Chapman NH, Nato AQ Jr, Bernier R, Ankenman K, Sohi H et al (2015) Whole exome sequencing in extended families with autism spectrum disorder implicates four candidate genes. Hum Genet 134:1055–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Constantino JN (2012) Social responsiveness scale, 2nd edn. Western Psychological Services, Los Angeles

    Google Scholar 

  • Cotney J, Muhle RA, Sanders SJ, Liu L, Willsey AJ et al (2015) The autism-associated chromatin modifier CHD8 regulates other autism risk genes during human neurodevelopment. Nat Commun 6:6404

    Article  CAS  PubMed  Google Scholar 

  • Cukier HN, Dueker ND, Slifer SH, Lee JM, Whitehead PL et al (2014) Exome sequencing of extended families with autism reveals genes shared across neurodevelopmental and neuropsychiatric disorders. Mol Autism 5:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A et al (2010) Identifying a high fraction of the human genome to be under selective constraint using GERP plus. Plos Comput Biol 6:e1001025

    Article  PubMed  PubMed Central  Google Scholar 

  • De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K et al (2014) Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515:209–215

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunn LM, Dunn DM (2007) Peabody picture vocabulary test, 4th edn. American Guidance Service, New York

    Google Scholar 

  • Dykens EM, Lense M (2011) Intellectual disabilities and autism spectrum disorder: a cautionary note. In: Amaral D, Dawson G, Geschwind DH (eds) Autism spectrum disorders. Oxford University Press, New York, pp 263–270

    Chapter  Google Scholar 

  • Felsenstein J, Churchill GA (1996) A hidden Markov Model approach to variation among sites in rate of evolution. Mol Biol Evol 13:93–104

    Article  CAS  PubMed  Google Scholar 

  • Gilman SR, Iossifov I, Levy D, Ronemus M, Wigler M et al (2011) Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron 70:898–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gratten J, Visscher PM, Mowry BJ, Wray NR (2013) Interpreting the role of de novo protein-coding mutations in neuropsychiatric disease. Nat Genet 45:234–238

    Article  CAS  PubMed  Google Scholar 

  • Harrison P, Oakland T (2008) Adaptive behavior assessment system®, 2nd edn. MHS Assessments, Toronto

    Google Scholar 

  • Hublitz P, Kunowska N, Mayer UP, Muller JM, Heyne K et al (2005) NIR is a novel INHAT repressor that modulates the transcriptional activity of p53. Genes Dev 19:2912–2924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin GR, Long CD, Liu WW, Tang Y, Zhu YJ et al (2013) Identification and characterization of novel alternative splice variants of human SAMD11. Gene 530:215–221

    Article  CAS  PubMed  Google Scholar 

  • Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH et al (2002) The human genome browser at UCSC. Genome Res 12:996–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM et al (2014) A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 46:310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozma P, Hughbanks-Wheaton DK, Locke KG, Fish GE, Gire AI et al (2005) Phenotypic characterization of a large family with RP10 autosomal-dominant retinitis pigmentosa: an Asp226Asn mutation in the IMPDH1 gene. Am J Ophthalmol 140:858–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krumm N, O’Roak BJ, Shendure J, Eichler EE (2014) A de novo convergence of autism genetics and molecular neuroscience. Trends Neurosci 37:95–105

    Article  CAS  PubMed  Google Scholar 

  • Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin MY, Pedrosa E, Shah A, Hrabovsky A, Maqbool S et al (2011) RNA-Seq of human neurons derived from iPS cells reveals candidate long non-coding RNAs involved in neurogenesis and neuropsychiatric disorders. Plos One 6:e23356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lord C, Rutter M, DiLavore P, Risi S (1999) Autism diagnostic observation schedule. Western Psychological Services, Los Angeles

    Google Scholar 

  • Lord C, Risi S, Lambrecht L, Cook EH, Leventhal BL et al (2000) The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 30:205–223

    Article  CAS  PubMed  Google Scholar 

  • Lord C, Rutter M, DiLavore PC, Risi S (2003) Autism diagnostic observation schedule manual. Western Psychological Services, Los Angeles

    Google Scholar 

  • Neale BM, Kou Y, Liu L, Ma’ayan A, Samocha KE et al (2012) Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485:242–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N et al (2012) Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485:246–250

    Article  PubMed  PubMed Central  Google Scholar 

  • Ozonoff S, Young GS, Carter A, Messinger D, Yirmiya N et al (2011) Recurrence risk for autism spectrum disorders: a Baby Siblings Research Consortium study. Pediatrics 128:e488–e495

    PubMed  PubMed Central  Google Scholar 

  • Piven J, Palmer P, Jacobi D, Childress D, Arndt S (1997) Broader autism phenotype: evidence from a family history study of multiple-incidence autism families. Am J Psychiatry 154:185–190

    Article  CAS  PubMed  Google Scholar 

  • Power RA, Kyaga S, Uher R, MacCabe JH, Langstrom N et al (2013) Fecundity of patients with schizophrenia, autism, bipolar disorder, depression, anorexia nervosa, or substance abuse vs their unaffected siblings. Jama Psychiatry 70:22–30

    Article  PubMed  Google Scholar 

  • Roid GH (2005) Stanford-binet intelligence scales, 5th edn. Western Psychological Services, Los Angeles

    Google Scholar 

  • Rosenbloom KR, Sloan CA, Malladi VS, Dreszer TR, Learned K et al (2013) ENCODE data in the UCSC genome browser: year 5 update. Nucleic Acids Res 41:D56–D63

    Article  CAS  PubMed  Google Scholar 

  • Rutter M, LeCouteur A, Lord C (2003) Autism diagnostic interview revised: WPS edition manual. Western Psychological Services, Los Angeles

    Google Scholar 

  • Sanders SJ, Ercan-Sencicek AG, Hus V, Luo R, Murtha MT et al (2011) Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron 70:863–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ et al (2012) De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485:237–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi R, Redman P, Ghose D, Liu Y, Ren XB et al (2017) Shank proteins differentially regulate synaptic transmission. Eneuro 4:163

    Article  Google Scholar 

  • Silverman JL, Yang M, Lord C, Crawley JN (2010) Behavioural phenotyping assays for mouse models of autism. Nat Rev Neurosci 11:490–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh P, Schimenti JC, Bolcun-Filas E (2015) A mouse geneticist’s practical guide to CRISPR applications. Genetics 199:1–15

    Article  CAS  PubMed  Google Scholar 

  • Sparrow S, Cichetti D, Balla D (2005) Vineland adaptive behavior scales, 2nd edn. Pearson, Bloomington

    Google Scholar 

  • Spielman RS, McGinnis RE, Ewens WJ (1993) Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 52:506–516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P et al (2015) Tissue-based map of the human proteome. Science 347:1260419

    Article  PubMed  Google Scholar 

  • Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R et al (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35:W71–W74

    Article  PubMed  PubMed Central  Google Scholar 

  • Villanueva A, Willer JR, Bryois J, Dermitzakis ET, Katsanis N et al (2014) Whole exome sequencing of a dominant retinitis pigmentosa family identifies a novel deletion in PRPF31. Invest Ophthalmol Vis Sci 55:2121–2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wechsler D (1981) Wechsler adult intelligence scale—revised (WAIS-R). Psychological Corporation, New York

    Google Scholar 

  • Wechsler D (1989) WPPSI-R manual: Wechsler preschool and primary scale of intelligence, revised. Psychological Corporation, New York

    Google Scholar 

  • Wechsler D (1992) Wechsler intelligence scale for children—third edition (WISC-III). Psychological Corporation, New York

    Google Scholar 

  • Yu XP, Shi W, Cheng LL, Wang YF, Chen D et al (2016) Identification of a rhodopsin gene mutation in a large family with autosomal dominant retinitis pigmentosa. Sci Rep 6:19759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuen RKC, Merico D, Bookman M, Howe JL, Thiruvahindrapuram B et al (2017) Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat Neurosci 20:602

    Article  CAS  PubMed Central  Google Scholar 

  • Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D et al (2018) Ensembl 2018. Nucleic Acids Res 46:D754–D761

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by National Institute of Mental Health Grant R01MH094293. We greatly appreciate the time and effort given by the family members who participated in both our local study and the MSSNG database. The authors also wish to acknowledge the resources of MSSNG (http://www.mss.ng), Autism Speaks and The Centre for Applied Genomics at The Hospital for Sick Children, Toronto, Canada. We thank the donors who supported this program for their generosity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen M. Wijsman.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

439_2018_1939_MOESM1_ESM.doc

Tables S1, S2 and S3 show Vineland Adaptive Behavior Scales II scores, Adaptive Behavior Assessment System II scores and Social Responsiveness Scale 2 scores, respectively, for affected individuals where available (DOC 26 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chapman, N.H., Bernier, R.A., Webb, S.J. et al. Replication of a rare risk haplotype on 1p36.33 for autism spectrum disorder. Hum Genet 137, 807–815 (2018). https://doi.org/10.1007/s00439-018-1939-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-018-1939-3

Navigation