Skip to main content
Log in

Molecular marker development from transcript sequences and germplasm evaluation for cultivated peanut (Arachis hypogaea L.)

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Molecular markers are important tools for genotyping in genetic studies and molecular breeding. The SSR and SNP are two commonly used marker systems developed from genomic or transcript sequences. The objectives of this study were to: (1) assemble and annotate the publicly available ESTs in Arachis and the in-house short reads, (2) develop and validate SSR and SNP markers, and (3) investigate the genetic diversity and population structure of the peanut breeding lines and the U.S. peanut mini core collection using developed SSR markers. An NCBI EST dataset with 252,951 sequences and an in-house 454 RNAseq dataset with 288,701 sequences were assembled separately after trimming. Transcript sequence comparison and phylogenetic analysis suggested that peanut is closer to cowpea and scarlet bean than to soybean, common bean and Medicago. From these two datasets, 6455 novel SSRs and 11,902 SNPs were identified. Of the discovered SSRs, 380 representing various SSR types were selected for PCR validation. The amplification rate was 89.2 %. Twenty-two (6.5 %) SSRs were polymorphic between at least one pair of four genotypes. Sanger sequencing of PCR products targeting 110 SNPs revealed 13 true SNPs between tetraploid genotypes and 193 homoeologous SNPs within genotypes. Eight out of the 22 polymorphic SSR markers were selected to evaluate the genetic diversity of Florida peanut breeding lines and the U.S. peanut mini core collection. This marker set demonstrated high discrimination power by displaying an average polymorphism information content value of 0.783, a combined probability of identity of 10−11, and a combined power of exclusion of 0.99991. The structure analysis revealed four sub-populations among the peanut accessions and lines evaluated. The results of this study enriched the peanut genomic resources, provided over 6000 novel SSR markers and the credentials for true peanut SNP marker development, and demonstrated the power of newly developed SSR markers in genotyping peanut germplasm and breeding materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson WF, Holbrook CC, Culbreath AK (1996) Screening the core collection for resistance to tomato spotted wilt virus. Peanut Sci 23:57–61

    Article  Google Scholar 

  • Barkley NA, Dean RE, Pittman RN, Wang ML, Holbrook CC, Pederson GA (2007) Genetic diversity of cultivated and wild-type peanuts evaluated with M13- tailed SSR markers and sequencing. Genet Res 89:93–106

    Article  PubMed  CAS  Google Scholar 

  • Batley J, Barker G, O’Sullivan H, Edwards KJ, Edwards D (2003) Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data1. Plant Physiol 132:84–91

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Belamkar V, Selvaraj MG, Ayers JL, Payton PR, Puppala N, Burow MD (2011) A first insight into population structure and linkage disequilibrium in the US peanut minicore collection. Genetica 139:411–429

    Article  PubMed  Google Scholar 

  • Beute MK, Wynne JC, Emery DA (1976) Registration of NC 3033 peanut germplasm. Crop Sci 16:887

    Article  Google Scholar 

  • Bi Y, Liu W, Xia H, Su L, Zhao C, Wan S, Wang X (2010) EST sequencing and gene expression profiling of cultivated peanut (Arachis hypogaea L.). Genome 53:832–839

    Article  PubMed  CAS  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    PubMed  CAS  PubMed Central  Google Scholar 

  • Branch WD (1996) Registration of ‘Georgia Green’ peanut. Crop Sci 36:806

    Article  Google Scholar 

  • Cardle L, Ramsay L, Milbourne D, Macaulay M, Marshall D, Waugh R (2000) Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics 156:847–854

    PubMed  CAS  PubMed Central  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  PubMed  CAS  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Feng S, Wang X, Zhang X, Dang PM, Holbrook C, Culbreath AK, Wu Y, Guo B (2012) Peanut (Arachis hypogaea) expressed sequence tag project: progress and application. Comp Funct Genomics. doi:10.1155/2012/373768

    PubMed  PubMed Central  Google Scholar 

  • Fischer S, Brunk BP, Chen F, Gao X, Harb OS, Iodice JB, Shanmugam D, Roos DS, Stoeckert CJ (2011) Using OrthoMCL to assign proteins to OrthoMCL-DB groups or to cluster proteomes into new ortholog groups. Curr Protoc Bioinform Chapter 6: Unit 6.12.1-19

  • Gadaleta A, Mangini G, Mulè G, Blanco A (2007) Characterization of dinucleotide and trinucleotide EST-derived microsatellites in the wheat genome. Euphytica 153:73–85

    Article  CAS  Google Scholar 

  • Gao L, Tang J, Li H, Jia J (2003) Analysis of microsatellites in major crops assessed by computational and experimental approaches. Mol Breed 12:245–261

    Article  CAS  Google Scholar 

  • Grivet LL, Glaszmann J-C, Vincentz MM, da Silva FF, Arruda PP (2003) ESTs as a source for sequence polymorphism discovery in sugarcane: example of the Adh genes. Theor Appl Genet 106:190–197

    PubMed  CAS  Google Scholar 

  • Guo B, Chen X, Dang P, Scully BT, Liang X, Holbrook CC, Yu J, Culbreath AK (2008) Peanut gene expression profiling in developing seeds at different reproduction stages during Aspergillus parasiticus infection. BMC Dev Biol 8:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo B, Chen X, Hong Y, Liang X, Dang P, Brenneman T, Holbrook CC, Culbreath A (2009) Analysis of gene expression profiles in leaf tissues of cultivated peanuts and development of EST-SSR markers and gene discovery. Int J Plant Genomics. doi:10.1155/2009/715605

    PubMed  PubMed Central  Google Scholar 

  • Guo BZ, Pandey M, He GH, Zhang XY, Liao BS, Culbreath A, Varshney R, Nwosu V, Wilson R, Stalker T (2013) Recent advances in molecular genetic linkage maps of cultivated peanut (Arachis hypogaea L.). Peanut Sci 40:95–106

    Article  Google Scholar 

  • Hall BG (2013) Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol 30:1229–1235

    Article  PubMed  CAS  Google Scholar 

  • He G, Meng R, Newman M, Gao G, Pittman RN, Prakash CS (2003) Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.). BMC Plant Biol 3:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Holbrook CC, Culbreath AK (2007) Registration of ‘Tifrunner’ Peanut. J Plant Registr 1:124

    Article  Google Scholar 

  • Holland MM, Parson W (2011) GeneMarker® HID: a reliable software tool for the analysis of forensic STR data. J Forensic Sci 56:29–35

    Article  PubMed  Google Scholar 

  • Hopkins MS, Casa AM, Wang T, Mitchell SE, Dean RE, Kochert GD, Kresovich S (1999) Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Sci 39:1243–1247

    Article  CAS  Google Scholar 

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hyten DL, Song Q, Fickus EW, Quigley CV, Lim J, Choi I, Hwang E, Pastor-Corrales M, Cregan PB (2010) High-throughput SNP discovery and assay development in common bean. BMC Genom 11:475

    Article  Google Scholar 

  • Islam S, Haque MS, Emon RM, Islam MM, Begum SN (2012) Molecular characterization of wheat (Triticum aestivum L.) genotypes through SSR markers. Bangladesh. J Agric Res 37(3):389–398

    Google Scholar 

  • Jamieson A (1994) The effectiveness of using co-dominant polymorphic allelic series for (1) checking pedigrees and (2) distinguishing full-sib pair members. Anim Genet 1:37–44

    Article  Google Scholar 

  • Kantety RV, La Rota M, Matthews DE, Sorrells ME (2002) Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol 48:501–510

    Article  PubMed  CAS  Google Scholar 

  • Kirst M, Cordeiro CM, Rezende G, Grattapaglia D (2005) Power of microsatellite markers for fingerprinting and parentage analysis in Eucalyptus grandis breeding populations. J Hered 96:161–166

    Article  PubMed  CAS  Google Scholar 

  • Koilkonda P, Sato S, Tabata S, Shirasawa K, Hirakawa H, Sakai H, Sasamoto S, Watanabe A, Wada T, Kishida Y, Tsuruoka H, Fujishiro T, Yamada M, Kohara M, Isobe S, Suzuki S, Hasegawa M, Kiyoshima H (2012) Large-scale development of expressed sequence tag-derived simple sequence repeat markers and diversity analysis in Arachis spp. Mol Breed 30:125–138

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kota R, Rudd S, Facius A, Kolesov G, Thiel T, Zhang H, Stein N, Mayer K, Graner A (2003) Snipping polymorphisms from large EST collections in barley (Hordeum vulgare L.). Mol Genet Genomics 270:24–33

    Article  PubMed  CAS  Google Scholar 

  • Kottapalli KR, Burow MD, Burow G, Burke J, Puppala N (2007) Molecular characterization of the US peanut mini core collection using microsatellite markers. Crop Sci 47:1718–1727

    Article  CAS  Google Scholar 

  • Kumpatla SP, Mukhopadhyay S (2005) Mining and survey of simple sequence repeats in expressed sequence tags of dicotyledonous species. Genome 48:985–998

    Article  PubMed  CAS  Google Scholar 

  • Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander DL, Garcia-Hernandez M, Karthikeyan AS, Lee CH, Nelson WD, Ploetz L, Singh S, Wensel A, Huala E (2012) The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucl Acids Res 40:D1202–D1210

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Chen CY, Knapp SJ, Culbreath AK, Holbrook CC, Guo BZ (2011) Characterization of simple sequence repeat (SSR) markers and genetic relationships within cultivated peanut (Arachis hypogaea L.). Peanut Sci 38:1–10

    Article  CAS  Google Scholar 

  • Liang X, Chen X, Hong Y, Liu H, Zhou G, Li S, Guo B (2009) Utility of EST-derived SSR in cultivated peanut (Arachis hypogaea L.) and Arachis wild species. BMC Plant Biol 9:35

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu L, Wu Y (2012) Development of a genome-wide multiple duplex-SSR protocol and its applications for the identification of selfed progeny in switchgrass. BMC Genom 13:522

    Article  CAS  Google Scholar 

  • Lopez C, Piégu B, Cooke R, Delseny M, Tohme J, Verdier V (2005) Using cDNA and genomic sequences as tools to develop SNP strategies in cassava (Manihot esculenta Crantz). Theor Appl Genet 110:425–431

    Article  PubMed  CAS  Google Scholar 

  • Luo M, Dang P, Guo BZ, He G, Holbrook CC, Bausher MG, Lee RD (2005) Generation of expressed sequence tags (ESTs) for gene discovery and marker development in cultivated peanut. Crop Sci 45:346–353

    Article  CAS  Google Scholar 

  • Mallikariuna N, Varshney RK (2014) Molecular markers, genetic maps and QTLs for molecular breeding in peanut. In: Mallikariuna N, Varshney RK (eds) Genetics, genomics and breeding of peanuts. CRC Press, Boca Raton, pp 79–113

    Google Scholar 

  • Milbourne D, Meyer R, Bradshaw J, Baird E, Bonar N, Provan J, Powell W, Waugh R (1997) Comparison of PCR-based marker systems for the analysis of genetic relationships in cultivated potato. Mol Breed 3:127–136

    Article  CAS  Google Scholar 

  • Min XJ, Butler G, Storms R, Tsang A (2005) OrfPredictor: predicting protein-coding regions in EST-derived sequences. Nucl Acids Res 33:W677–W680

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Moretzsohn MC, Leoi L, Proite K, Guimarães PM, Leal-bertioli SCM, Gimenes MA, Martins WS, Valls JFM, Grattapaglia D, Bertioli DJ (2005) A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theor Appl Genet 111:1060–1071

    Article  PubMed  CAS  Google Scholar 

  • Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30:194–200

    Article  PubMed  CAS  Google Scholar 

  • Nagy E, Guo S, Khanal S, Taylor C, Ozias-Akins P, Stalker HT, Nielsen N (2010) Developing a high density molecular map of the A-genome species A. duranensis. In: proceedings of American Peanut Research and Education Society (APRES), 12–15th July, Florida, USA

  • Nagy S, Poczai P, Cernák I, Gorji AM, Hegeds G, Taller J (2012a) PICcalc: an online program to calculate polymorphic information content for molecular genetic studies. Biochem Genet 50:670–672

    Article  PubMed  CAS  Google Scholar 

  • Nagy ED, Guo Y, Tang S, Bowers JE, Okashah RA, Taylor CA, Zhang D, Khanal S, Heesacker AF, Khalilian N, Farmer AD, Carrasquilla-Garcia N, Penmetsa RV, Cook D, Stalker HT, Nielsen N, Ozias-Akins P, Knapp SJ (2012b) A high-density genetic map of Arachis duranensis, a diploid ancestor of cultivated peanut. BMC Genom 13:469

    Article  CAS  Google Scholar 

  • Natarajan P, Parani M (2011) De novo assembly and transcriptome analysis of five major tissues of Jatropha curcas L. using GS FLX titanium platform of 454 pyrosequencing. BMC Genom 12:191

    Article  CAS  Google Scholar 

  • Nicot N, Chiquet V, Gandon B, Amilhat L, Legeai F, Leroy P, Bernard M, Sourdille P (2004) Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs). Theor Appl Genet 109:800–805

    Article  PubMed  CAS  Google Scholar 

  • Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol 4:347–354

    Article  PubMed  CAS  Google Scholar 

  • Pan YB (2006) Highly polymorphic microsatellite DNA markers for sugarcane germplasm evaluation and variety identity testing. Sugar Tech 8(4):246–256

    Article  CAS  Google Scholar 

  • Pandey MK, Gautami B, Jayakumar T, Sriswathi M, Upadhyaya HD, Varshney RK, Gowda MVC, Radhakrishnan T, Bertioli DJ, Knapp SJ, Cook DR (2012a) Highly informative genic and genomic SSR markers to facilitate molecular breeding in cultivated groundnut (Arachis hypogaea). Plant Breeding 131:139–147

    Article  CAS  Google Scholar 

  • Pandey MK, Nigam SN, Upadhyaya HD, Janila P, Varshney RK, Monyo E, Ozias-Akins P, Liang X, Guimarães P, Zhang X, Guo B, Cook DR, Michelmore R, Bertioli DJ (2012b) Advances in Arachis genomics for peanut improvement. Biotechnol Adv 30:639–651

    Article  PubMed  CAS  Google Scholar 

  • Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A (1998) Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Mol Biol Evol 15:1275–1287

    Article  PubMed  CAS  Google Scholar 

  • Perrier X, Flori A, Bonnot F (2003) Data analysis methods. In: Hamon P, Seguin M, Perrier X, Glaszmann JC (eds) Genetic diversity of cultivated tropical plants. Science Publishers, Montpellier, pp 43–76

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  PubMed Central  Google Scholar 

  • Proite K, Leal-Bertioli SC, Bertioli DJ, Moretzsohn MC, Da Silva FR, Martins NF, Guimaraes PM (2007) ESTs from a wild Arachis species for gene discovery and marker development. BMC Plant Biol 7:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Quackenbush J, Liang F, Holt I, Pertea G, Upton J (2000) The TIGR gene indices: reconstruction and representation of expressed gene sequences. Nucl Acids Res 28:141

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rabbani MA, Masood MS, Shinwari ZK, Yamaguchi-Shinozaki K (2010) Genetic analysis of basmati and non-basmati Pakistani rice (Oryza sativa L.) cultivars using microsatellite markers. Pak J Bot 42(4):2551–2564

    CAS  Google Scholar 

  • Ren X, Jiang H, Yan Z, Chen Y, Zhou X, Huang L, Lei Y, Huang J, Yan L, Qi Y, Wei W, Liao B (2014) Genetic diversity and population structure of the major peanut (Arachis hypogaea L.) cultivars grown in China by SSR markers. Plos One 9(2):e88091

    Article  PubMed  PubMed Central  Google Scholar 

  • Rongwen J, Akkaya Bhagwat AA, Lavi U, Cregan PB (1995) The use of microsatellite DNA markers for soybean genotype identification. Theor Appl Genet 90:43–48

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg NA, Burke T, Elo K, Feldman MW, Freidlin PJ, Groenen MA, Hillel J, Mäki-Tanila A, Tixier-Boichard M, Vignal A, Wimmers K, Weigend S (2001) Empirical evaluation of genetic clustering methods using multilocus genotypes from 20 chicken breeds. Genetics 159:699–713

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rowland LJ, Alkharouf N, Darwish O, Ogden EL, Polashock JJ, Bassil NV, Main D (2012) Generation and analysis of blueberry transcriptome sequences from leaves, developing fruit, and flower buds from cold acclimation through deacclimation. BMC Plant Biol 12:46

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Saha MC, Mian MA, Rouf Eujayl I, Zwonitzer JC, Wang L, May GD (2004) Tall fescue EST-SSR markers with transferability across several grass species. Theor Appl Genet 109:783–791

    Article  PubMed  Google Scholar 

  • Schmid KJ, Sorensen TR, Stracke R, Torjek O, Altmann T, Mitchell-Olds T, Weisshaar B (2003) Large-scale identification and analysis of genome-wide single-nucleotide polymorphisms for mapping in Arabidopsis thaliana. Genome Res 13(6):1250–1257

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt M (2007) Transformation and functional genomics in legumes. International workshop on advances in arachis through genomics and biotechnology. Atlanta, Georgia

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  PubMed  CAS  Google Scholar 

  • Schmutz J, McClean PE, Mamidi S, Wu GA, Cannon SB, Grimwood J, Jenkins J, Shu S, Song Q, Chavarro C, Torres-Torres M, Geffroy V, Moghaddam SM, Gao D, Abernathy B, Barry K, Blair M, Brick MA, Chovatia M, Gepts P, Goodstein DM, Gonzales M, Hellsten U, Hyten DL, Jia G, Kelly JD, Kudrna D, Lee R, Richard MMS, Miklas PN, Osorno JM, Rodrigues J, Thareau V, Urrea CA, Wang M, Yu Y, Zhang M, Wing RA, Cregan PB, Rokhsar DS, Jackson SA (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 46:707–713

    Article  PubMed  CAS  Google Scholar 

  • Siwach P, Jain S, Saini N, Chowdhury VK, Jain RK (2004) Allelic diversity among basmati and non-basmati long-grain Indica rice varieties using microsatellite markers. J Plant Biochem Biotechnol 13:25–32

    Article  CAS  Google Scholar 

  • Smith JSC, Chin ECL, Shu H, Smith OS, Wall SJ, Senior ML, Mitchell SE, Kresovich S, Ziegle J (1997) An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPS and pedigree. Theor Appl Genet 95:163–173

    Article  CAS  Google Scholar 

  • Song GQ, Li MJ, Xiao H, Wang XJ, Tang RH, Xia H, Zhao CZ, Bi YP (2010) EST sequencing and SSR marker development from cultivated peanut (Arachis hypogaea L.). Electron J Biotechnol. doi:10.2225/vol13

    Google Scholar 

  • Struss D, Plieske J (1998) The use of microsatellite markers for detection of genetic diversity in barley populations. Theor Appl Genet 97:308–315

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Thiel TT, Michalek WW, Varshney RR, Graner AA (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422

    PubMed  CAS  Google Scholar 

  • Thorvaldsdottir H, Robinson JT, Mesirov JP (2013) Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tillman BL, Stalker HT (2009) Peanut. In: Vollmann J, Rajcan I (eds) Oil Crops, handbook of plant breeding 4. Springer, New York, pp 287–315

    Google Scholar 

  • Upadhyaya HD (2005) Variability for drought resistance related traits in the mini core collection of peanut. Crop Sci 45:1432–1440

    Article  Google Scholar 

  • Varshney RK, Thiel T, Stein N, Langridge P, Graner A (2002) In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cell Mol Biol Lett 7:537–546

    PubMed  CAS  Google Scholar 

  • Varshney RK, Mohan SM, Gaur PM, Gangarao NVPR, Pandey MK, Bohra A, Sawargaonkar SL, Chitikineni A, Kimurto PK, Janila P, Saxena KB, Fikre A, Sharma M, Rathore A, Pratap A, Tripathi S, Datta S, Chaturvedi SK, Mallikarjuna N, Anuradha G, Babbar A, Choudhary AK, Mhase MB, Bharadwaj C, Mannur DM, Harer PN, Guo B, Liang X, Nadarajan N, Gowda CLL (2013) Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Biotechnol Adv 31:1120–1134

    Article  PubMed  Google Scholar 

  • Wang ML, Sukumaran S, Barkley NA, Chen Z, Chen CY, Guo B, Pittman RN, Stalker HT, Holbrook CC, Pederson GA, Yu J (2011) Population structure and marker-trait association analysis of the US peanut (Arachis hypogaea L.) mini-core collection. Theor Appl Genet 123:1307–1317

    Article  PubMed  Google Scholar 

  • Yin D, Wang Y, Zhang X, Li H, Lu X, Zhang J, Zhang W, Chen S (2013) De novo assembly of the peanut (Arachis hypogaea L.) seed transcriptome revealed candidate transcripts for oil accumulation pathways. Plos One 8(9):e73767

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • You FM, Huo N, Gu YQ, Luo M, Ma Y, Hane D, Lazo GR, Dvorak J, Anderson OD (2008) BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC Bioinform 9:253

    Article  Google Scholar 

  • Young ND, Debellé F, Oldroyd GED et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480:520–524

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang J, Liang S, Duan J, Wang J, Chen S, Cheng Z, Zhang Q, Liang X, Li Y (2012) De novo assembly and characterisation of the transcriptome during seed development, and generation of genic-SSR markers in peanut (Arachis hypogaea L.). BMC Genom 13:90

    Article  CAS  Google Scholar 

  • Zhao Y, Prakash CS, He G (2012) Characterization and compilation of polymorphic simple sequence repeat (SSR) markers of peanut from public database. BMC Res Notes 5:362

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhou X, Xia Y, Ren X, Chen Y, Huang L, Huang S, Liao B, Lei Y, Yan L, Jiang H (2014) Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double-digest restriction-site-associated DNA sequencing (ddRADseq). BMC Genom 15:351

    Article  Google Scholar 

  • Zimmer EA, Wen J (2012) Using nuclear gene data for plant phylogenetics: progress and prospects. Mol Phylogenet Evol 65(2):774–785

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The research presented in this article was sponsored by the Florida Peanut Producers Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Z., Gallo, M., Tillman, B.L. et al. Molecular marker development from transcript sequences and germplasm evaluation for cultivated peanut (Arachis hypogaea L.). Mol Genet Genomics 291, 363–381 (2016). https://doi.org/10.1007/s00438-015-1115-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-015-1115-6

Keywords

Navigation