Skip to main content
Log in

Evolutionary conservation of TORC1 components, TOR, Raptor, and LST8, between rice and yeast

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Target of rapamycin (TOR) is a conserved eukaryotic serine/threonine kinase that functions as a central controller of cell growth. TOR protein is structurally defined by the presence several conserved domains such as the HEAT repeat, focal adhesion target (FAT), FKBP12/rapamycin binding (FRB), kinase, and FATC domains starting from the N-terminus. In most eukaryotes, TOR forms two distinct physical and functional complexes, which are termed as TOR complex 1 (TORC1) and TORC2. However, plants contain only TORC1 components, i.e., TOR, Raptor, and LST8. In this study, we analyzed the gene structure and functions of TORC components in rice to understand the properties of the TOR complex in plants. Comparison of the locations of introns in these genes among rice and other eukaryotes showed that they were well conserved among plants except for Chlamydomonas. Moreover, the intron positions in the coding sequence of human Raptor and LST8 were closer to those of plants than of fly or nematode. Complementation tests of rice TOR (OsTOR) components in yeast showed that although OsTOR did not complement yeast tor mutants, chimeric TOR, which consisted of the HEAT repeat and FAT domain from yeast and other regions from rice, rescued the tor mutants, indicating that the HEAT repeat and FAT domains are important for species-specific signaling. OsRaptor perfectly complemented a kog1 (yeast Raptor homolog) mutant, and OsLST8 partially complemented an lst8 mutant. Together, these data suggest the importance of the N-terminal region of the TOR, HEAT, and FAT domains for functional diversification of the TOR complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson GH, Veit B, Hanson MR (2005) The Arabidopsis AtRaptor genes are essential for post-embryonic plant growth. BMC Biol 3:12

    Article  PubMed Central  PubMed  Google Scholar 

  • Bai X, Jiang Y (2010) Key factors in mTOR regulation. Cell Mol Life Sci 67:239–253

    Article  CAS  PubMed  Google Scholar 

  • Caldana C, Scheible WR, Mueller-Roeber B, Ruzicic S (2007) A quantitative RT-PCR platform for high-throughput expression profiling of 2500 rice transcription factors. Plant Methods 3:7

    Article  PubMed Central  PubMed  Google Scholar 

  • Caldana C, Li Y, Leisse A, Zhang Y, Bartholomaeus L, Fernie AR, Willmitzer L, Giavalisco P (2013) Systemic analysis of inducible target of rapamycin mutants reveal a general metabolic switch controlling growth in Arabidopsis thaliana. Plant J 73:897–909

    Article  CAS  PubMed  Google Scholar 

  • Deprost D, Yao L, Sormani R, Moreau M, Leterreux G, Nicolai M, Bedu M, Robaglia C, Meyer C (2007) The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. EMBO Rep 8:864–870

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Diaz-Troya S, Florencio FJ, Crespo JL (2008) Target of rapamycin and LST8 proteins associate with membranes from the endoplasmic reticulum in the unicellular green alga Chlamydomonas reinhardtii. Eukaryot Cell 7:212–222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dunlop EA, Tee AR (2009) Mammalian target of rapamycin complex 1: signalling inputs, substrates and feedback mechanisms. Cell Signal 21:827–835

    Article  CAS  PubMed  Google Scholar 

  • Helliwell SB, Howald I, Barbet N, Hall MN (1998) TOR2 is part of two related signaling pathways coordinating cell growth in Saccharomyces cerevisiae. Genetics 148:99–112

    PubMed Central  CAS  PubMed  Google Scholar 

  • Inoki K, Ouyang H, Li Y, Guan KL (2005) Signaling by target of rapamycin proteins in cell growth control. Microbiol Mol Biol Rev 69:79–100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jacinto E (2008) What controls TOR? IUBMB Life 60:483–496

    Article  CAS  PubMed  Google Scholar 

  • Jacquemin J, Chaparro C, Laudie M, Berger A, Gavory F, Goicoechea JL, Wing RA, Cooke R (2011) Long-range and targeted ectopic recombination between the two homologous chromosomes 11 and 12 in Oryza species. Mol Biol Evol 28:3139–3150

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Sarbassov DD, Ali SM, Latek RR, Guntur KV, Erdjument-Bromage H, Tempst P, Sabatini DM (2003) GβL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 11:895–904

    Article  CAS  PubMed  Google Scholar 

  • Leiber RM, John F, Verhertbruggen Y, Diet A, Knox JP, Ringli C (2010) The TOR pathway modulates the structure of cell walls in Arabidopsis. Plant Cell 22:1898–1908

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Y, Bassham DC (2010) TOR is a negative regulator of autophagy in Arabidopsis thaliana. PLoS One 5:e11883

    Article  PubMed Central  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Loewith R, Hall MN (2011) Target of rapamycin (tor) in nutrient signaling and growth control. Genetics 189:1177–1201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, Hall MN (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10:457–468

    Article  CAS  PubMed  Google Scholar 

  • Mahfouz MM, Kim S, Delauney AJ, Verma DP (2006) Arabidopsis target of rapamycin interacts with RAPTOR, which regulates the activity of S6 kinase in response to osmotic stress signals. Plant Cell 18:477–490

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Menand B, Desnos T, Nussaume L, Berger F, Bouchez D, Meyer C, Robaglia C (2002) Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proc Natl Acad Sci USA 99:6422–6427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moreau M, Azzopardi M, Clement G, Dobrenel T, Marchive C, Renne C, Martin-Magniette ML, Taconnat L, Renou JP, Robaglia C, Meyer C (2012) Mutations in the Arabidopsis homolog of LST8/GβL, a partner of the target of rapamycin kinase, impair plant growth, flowering, and metabolic adaptation to long days. Plant Cell 24:463–481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mumberg D, Muller R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156:119–122

    Article  CAS  PubMed  Google Scholar 

  • Nakashima A, Maruki Y, Imamura Y, Kondo C, Kawamata T, Kawanishi I, Takata H, Matsuura A, Lee KS, Kikkawa U, Ohsumi Y, Yonezawa K, Kamada Y (2008) The yeast tor signaling pathway is involved in G2/M transition via Polo-Kinase. PLoS One 3:e2223

    Article  PubMed Central  PubMed  Google Scholar 

  • Oldenburg KR, Vo KT, Michaelis S, Paddon C (1997) Recombination-mediated PCR-directed plasmid construction in vivo in yeast. Nucleic Acids Res 25:451–452

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Robaglia C, Menand B, Lei Y, Sormani R, Nicolai M, Gery C, Teoule E, Deprost D, Meyer C (2004) Plant growth: the translational connection. Biochem Soc Trans 32:581–584

    Article  CAS  PubMed  Google Scholar 

  • Robaglia C, Thomas M, Meyer C (2012) Sensing nutrient and energy status by SnRK1 and TOR kinases. Curr Opin Plant Biol 15:301–307

    Article  CAS  PubMed  Google Scholar 

  • Rogozin IB, Wolf YI, Sorokin AV, Mirkin BG, Koonin EV (2003) Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Curr Biol 13:1512–1517

    Article  CAS  PubMed  Google Scholar 

  • Watanabe R, Wei L, Huang J (2011) mTOR signaling, function, novel inhibitors, and therapeutic targets. J Nucl Med 52:497–500

    CAS  PubMed  Google Scholar 

  • Xiong Y, Sheen J (2012) Rapamycin and glucose-target of rapamycin (TOR) protein signaling in plants. J Biol Chem 287:2836–2842

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiong Y, McCormack M, Li L, Hall Q, Xiang C, Sheen J (2013) Glucose-TOR signalling reprograms the transcriptome and activates meristems. Nature 496:181–186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang H, Rudge DG, Koos JD, Vaidialingam B, Yang HJ, Pavletich NP (2013) mTOR kinase structure, mechanism and regulation. Nature 497:217–223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • You DJ, Kim YL, Park CR, Kim DK, Yeom J, Lee C, Ahn C, Seong JY, Hwang JI (2010) Regulation of IκB kinase by GβL through recruitment of the protein phosphatases. Mol Cells 30:527–532

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank M. Hall (University of Basel Biozentrum), R. Loewith (University of Geneva), and Y. Kamada (National Institute for Basic Biology, Okazaki) for providing us with yeast strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiko Kozaki.

Additional information

Communicated by M. Collart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maegawa, K., Takii, R., Ushimaru, T. et al. Evolutionary conservation of TORC1 components, TOR, Raptor, and LST8, between rice and yeast. Mol Genet Genomics 290, 2019–2030 (2015). https://doi.org/10.1007/s00438-015-1056-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-015-1056-0

Keywords

Navigation