Skip to main content

Advertisement

Log in

The role of forkhead-associated (FHA)-domain proteins in plant biology

  • Review
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The forkhead-associated (FHA) domain, a well-characterized small protein module that mediates protein–protein interactions by targeting motifs containing phosphothreonine, is present in many regulatory molecules like protein kinase, phosphatases, transcription factors, and other functional proteins. FHA-domain containing proteins in yeast and human are involved in a large variety of cellular processes such as DNA repair, cell cycle arrest, or pre-mRNA processing. Since the first FHA-domain protein, kinase-associated protein phosphatase (KAPP) was found in plants, the interest in plant FHA-containing proteins has increased dramatically, mainly due to the important role of FHA domain-containing proteins in plant growth and development. In this review, we provide a comprehensive overview of the fundamental properties of FHA domain-containing proteins in plants, and systematically summarized and analyzed the research progress of proteins containing the FHA domain in plants. We also emphasized that AT5G47790 and its homologs may play an important role as the regulatory subunit of protein phosphatase 1 (PP1) in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  • Agrawal GK, Yamazaki M, Kobayashi M, Hirochika R, Miyao A, Hirochika H (2001) Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel ostatc gene. Plant Physiol 125:1248–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahn ER, Cho HK, Pai HS (2013) The forkhead-associated domain 2 (FHA2) in Arabidopsis plays a role in plant fertility by regulating stamen development. Planta 237:1015–1023

    Article  CAS  PubMed  Google Scholar 

  • Ahn JW, Kim M, Bang JW, Pai HS (2003) Molecular characteristics and differential expression of two nuclear factors containing the FHA domain in Arabidopsis. Plant Sci 165:1023–1032

    Article  CAS  Google Scholar 

  • Akutsu N, Iijima K, Hinata T, Tauchi H (2007) Characterization of the plant homolog of Nijmegen breakage syndrome 1: involvement in DNA repair and recombination. Biochem Biophys Res Commun 353:394–398

    Article  CAS  PubMed  Google Scholar 

  • Alber T (2009) Signaling mechanisms of the Mycobacterium tuberculosis receptor Ser/Thr protein kinases. Curr Opin Struct Biol 19:650–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almawi AW, Matthews LA, Guarné A (2017) FHA domains: phosphopeptide binding and beyond. Prog Biophys Mol Biol 127:105–110

    Article  CAS  PubMed  Google Scholar 

  • Audran C, Liotenberg S, Gonneau M, North H, Frey A, Tap-Waksman K, Vartanian N, Marion-Poll A (2001) Localisation and expression of zeaxanthin epoxidase mRNA in Arabidopsis in response to drought stress and during seed development. Aust J Plant Physiol 28:1161–1173

    CAS  Google Scholar 

  • Barrero JM, Piqueras P, González-Guzmán M, Serrano R, Rodríguez PL, Ponce MR, Micol JL (2005) A mutational analysis of the ABA1 gene of Arabidopsis thaliana highlights the involvement of ABA in vegetative development. J Exp Bot 56:2071–2083

    Article  CAS  PubMed  Google Scholar 

  • Barrero JM, Rodríguez PL, Quesada V, Alabadí D, Blázquez MA, Boutin JP, Marion-Poll A, Ponce MR, Micol JL (2008) The ABA1 gene and carotenoid biosynthesis are required for late skotomorphogenic growth in Arabidopsis thaliana. Plant Cell Environ 31:227–234

    Article  CAS  PubMed  Google Scholar 

  • Barthe P, Roumestand C, Canova MJ, Kremer L, Hurard C, Molle V, Cohen-Gonsaud M (2009) Dynamic and structural characterization of a bacterial FHA protein reveals a new autoinhibition mechanism. Structure 17:568–578

    Article  CAS  PubMed  Google Scholar 

  • Bethmann S, Melzer M, Schwarz N, Jahns P (2019) The zeaxanthin epoxidase is degraded along with the D1 protein during photoinhibition of photosystem II. Plant Direct 3:e00185

    Article  PubMed  PubMed Central  Google Scholar 

  • Beullens M, Van Eynde A, Vulsteke V, Connor J, Shenolikar S, Stalmans W, Bollen M (1999) Molecular determinants of nuclear protein phosphatase-1 regulation by NIPP-1. J Biol Chem 274:14053–14061

    Article  CAS  PubMed  Google Scholar 

  • Beullens M, Vulsteke V, Van Eynde A, Jagiello I, Stalmans W, Bollen M (2000) The C-terminus of NIPP1 (nuclear inhibitor of protein phosphatase-1) contains a novel binding site for protein phosphatase-1 that is controlled by tyrosine phosphorylation and RNA binding. Biochem J 352:651–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bheri M, Mahiwal S, Sanyal SK, Pandey GK (2021) Plant protein phosphatases: what do we know about their mechanism of action? FEBS J 288:756–785

    Article  CAS  PubMed  Google Scholar 

  • Boens S, Verbinnen I, Verhulst S, Szekér K, Ferreira M, Gevaert T, Baes M, Roskams T, van Grunsven LA, Van Eynde A et al (2016) Brief report: the deletion of the phosphatase regulator nipp1 causes progenitor cell expansion in the adult liver. Stem Cells 34:2256–2262

    Article  CAS  PubMed  Google Scholar 

  • Borel C, Audran C, Frey A, Marion-Poll A, Tardieu F, Simonneau T (2001) N. plumbaginifolia zeaxanthin epoxidase transgenic lines have unaltered baseline ABA accumulations in roots and xylem sap, but contrasting sensitivities of ABA accumulation to water deficit. J Exp Bot 52:427–434

    Article  CAS  PubMed  Google Scholar 

  • Boudrez A, Beullens M, Groenen P, Van Eynde A, Vulsteke V, Jagiello I, Murray M, Krainer AR, Stalmans W, Bollen M (2000) NIPP1-mediated interaction of protein phosphatase-1 with CDC5L, a regulator of pre-mRNA splicing and mitotic entry. J Biol Chem 275:25411–25417

    Article  CAS  PubMed  Google Scholar 

  • Braun DM, Stone JM, Walker JC (1997) Interaction of the maize and Arabidopsis kinase interaction domains with a subset of receptor-like protein kinases: implications for transmembrane signaling in plants. Plant J 12:83–95

    Article  CAS  PubMed  Google Scholar 

  • Casamayor A, Ariño J (2020) Controlling Ser/Thr protein phosphatase PP1 activity and function through interaction with regulatory subunits. Adv Protein Chem Struct Biol 122:231–288

    Article  CAS  PubMed  Google Scholar 

  • Cerulli RA, Kritzer JA (2020) Phosphotyrosine isosteres: past, present and future. Org Biomol Chem 18:583–605

    Article  CAS  PubMed  Google Scholar 

  • Chevalier D, Morris ER, Walker JC (2009) 14-3-3 and FHA domains mediate phosphoprotein interactions. Annu Rev Plant Biol 60:67–91

    Article  CAS  PubMed  Google Scholar 

  • d’Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, Simon M, Jenczewski E, Mercier R (2008) Mutations in AtPS1 (Arabidopsis thaliana parallel spindle 1) lead to the production of diploid pollen grains. PLoS Genet 4:e1000274

    Article  PubMed  PubMed Central  Google Scholar 

  • Desai M, Pan R, Hu J (2017) Arabidopsis forkhead-associated domain protein 3 negatively regulates peroxisome division. J Integr Plant Biol 59:454–458

    Article  CAS  PubMed  Google Scholar 

  • Ding Z, Wang H, Liang X, Morris ER, Gallazzi F, Pandit S, Skolnick J, Walker JC, Van Doren SR (2007) Phosphoprotein and phosphopeptide interactions with the FHA domain from Arabidopsis kinase-associated protein phosphatase. Biochemistry 46:2684–2696

    Article  CAS  PubMed  Google Scholar 

  • Duan X, He ZG (2011) Characterization of the specific interaction between archaeal FHA domain-containing protein and the promoter of a flagellar-like gene-cluster and its regulation by phosphorylation. Biochem Biophys Res Commun 407:242–247

    Article  CAS  PubMed  Google Scholar 

  • Durocher D, Henckel J, Fersht AR, Jackson SP (1999) The FHA domain is a modular phosphopeptide recognition motif. Mol Cell 4:387–394

    Article  CAS  PubMed  Google Scholar 

  • Durocher D, Jackson SP (2002) The FHA domain. FEBS Lett 513:58–66

    Article  CAS  PubMed  Google Scholar 

  • Durocher D, Taylor IA, Sarbassova D, Haire LF, Westcott SL, Jackson SP, Smerdon SJ, Yaffe MB (2000) The molecular basis of FHA domain:phosphopeptide binding specificity and implications for phospho-dependent signaling mechanisms. Mol Cell 6:1169–1182

    Article  CAS  PubMed  Google Scholar 

  • Farkas I, Dombradi V, Miskei M, Szabados L, Koncz C (2007) Arabidopsis PPP family of serine/threonine phosphatases. Trends Plant Sci 12:169–176

    Article  CAS  PubMed  Google Scholar 

  • Felgueiras J, Jerónimo C, Fardilha M (2020) Protein phosphatase 1 in tumorigenesis: is it worth a closer look? Biochim Biophys Acta Rev Cancer 1874:188433

    Article  CAS  PubMed  Google Scholar 

  • Feng B, Ma S, Chen S, Zhu N, Zhang S, Yu B, Yu Y, Le B, Chen X, Dinesh-Kumar SP et al (2016) PARylation of the forkhead-associated domain protein DAWDLE regulates plant immunity. EMBO Rep 17:1799–1813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira M, Boens S, Winkler C, Szekér K, Verbinnen I, Van Eynde A, Fardilha M, Bollen M (2017) The protein phosphatase 1 regulator NIPP1 is essential for mammalian spermatogenesis. Sci Rep 7:13364

    Article  PubMed  PubMed Central  Google Scholar 

  • Gómez-Gómez L, Bauer Z, Boller T (2001) Both the extracellular leucine-rich repeat domain and the kinase activity of FSL2 are required for flagellin binding and signaling in Arabidopsis. Plant Cell 13:1155–1163

    Article  PubMed  PubMed Central  Google Scholar 

  • Gramegna G, Modesti V, Savatin DV, Sicilia F, Cervone F, De Lorenzo G (2016) GRP-3 and KAPP, encoding interactors of WAK1, negatively affect defense responses induced by oligogalacturonides and local response to wounding. J Exp Bot 67:1715–1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu BW, Tan LM, Zhang CJ, Hou XM, Cai XW, Chen S, He XJ (2020) FHA2 is a plant-specific ISWI subunit responsible for stamen development and plant fertility. J Integr Plant Biol 62:1703–1716

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Qin Q, Yan J, Niu Y, Huang B, Guan L, Li Y, Ren D, Li J, Hou S (2015) TYPE-ONE PROTEIN PHOSPHATASE4 regulates pavement cell interdigitation by modulating PIN-FORMED1 polarity and trafficking in Arabidopsis. Plant Physiol 167:1058–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammet A, Pike BL, McNees CJ, Conlan LA, Tenis N, Heierhorst J (2003) FHA domains as phospho-threonine binding modules in cell signaling. IUBMB Life 55:23–27

    Article  CAS  PubMed  Google Scholar 

  • Hermann-Le Denmat S, Werner M, Sentenac A, Thuriaux P (1994) Suppression of yeast RNA polymerase III mutations by FHL1, a gene coding for a fork head protein involved in rRNA processing. Mol Cell Biol 14:2905–2913

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hofmann K, Bucher P (1995) The FHA domain: a putative nuclear signalling domain found in protein kinases and transcription factors. Trends Biochem Sci 20:347–349

    Article  CAS  PubMed  Google Scholar 

  • Hopfner KP, Craig L, Moncalian G, Zinkel RA, Usui T, Owen BA, Karcher A, Henderson B, Bodmer JL, McMurray CT et al (2002) The Rad50 zinc-hook is a structure joining Mre11 complexes in DNA recombination and repair. Nature 418:562–566

    Article  CAS  PubMed  Google Scholar 

  • Karniel U, Koch A, Zamir D, Hirschberg J (2020) Development of zeaxanthin-rich tomato fruit through genetic manipulations of carotenoid biosynthesis. Plant Biotechnol J 18:2292–2303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashihara K, Ojiri T, Gomi, K.J.J.o.G.P.P. (2022) Overexpression of OsNINJA1-interacting protein OsFHA1 affects jasmonate-mediated OsMYC2 signaling but not disease resistance in rice. J Gen Plant Pathol 88:225–231

    Article  CAS  Google Scholar 

  • Kim H, Na SH, Lee SY, Jeong YM, Hwang HJ, Hur JY, Park SH, Woo JC, Kim SG (2012) Structure-function studies of a plant tyrosyl-DNA phosphodiesterase provide novel insights into DNA repair mechanisms of Arabidopsis thaliana. Biochem J 443:49–56

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Ahn JW, Song K, Paek KH, Pai HS (2002) Forkhead-associated domains of the tobacco NtFHA1 transcription activator and the yeast Fhl1 forkhead transcription factor are functionally conserved. J Biol Chem 277:38781–38790

    Article  CAS  PubMed  Google Scholar 

  • Lee GI, Ding Z, Walker JC, Van Doren SR (2003) NMR structure of the forkhead-associated domain from the Arabidopsis receptor kinase-associated protein phosphatase. Proc Natl Acad Sci USA 100:11261–11266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SY, Kim H, Hwang HJ, Jeong YM, Na SH, Woo JC, Kim SG (2010) Identification of tyrosyl-DNA phosphodiesterase as a novel DNA damage repair enzyme in Arabidopsis. Plant Physiol 154:1460–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SY, Jang SJ, Jeong HB, Lee SY, Venkatesh J, Lee JH, Kwon JK, Kang BC (2021) A mutation in Zeaxanthin epoxidase contributes to orange coloration and alters carotenoid contents in pepper fruit (Capsicum annuum). Plant J 106:1692–1707

    Article  CAS  PubMed  Google Scholar 

  • Li J, Lee GI, Van Doren SR, Walker JC (2000) The FHA domain mediates phosphoprotein interactions. J Cell Sci 113(Pt 23):4143–4149

    Article  CAS  PubMed  Google Scholar 

  • Li J, Smith GP, Walker JC (1999) Kinase interaction domain of kinase-associated protein phosphatase, a phosphoprotein-binding domain. Proc Natl Acad Sci USA 96:7821–7826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu BA, Nash PD (2012) Evolution of SH2 domains and phosphotyrosine signalling networks. Philos Trans R Soc Lond B Biol Sci 367:2556–2573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Yan J, Qin Q, Zhang J, Chen Y, Zhao L, He K, Hou S (2019) Type one protein phosphatases (TOPPs) contribute to the plant defense response in Arabidopsis. J Integr Plant Biol 62:360–377

    Article  PubMed  Google Scholar 

  • Liu Y, Ye S, Yuan G, Ma X, Heng S, Yi B, Ma C, Shen J, Tu J, Fu T, Wen J (2020) Gene silencing of BnaA09.ZEP and BnaC09.ZEP confers orange color in Brassica napus flowers. Plant J 104:932–949

    Article  CAS  PubMed  Google Scholar 

  • Lu K, Zhang YD, Zhao CF, Zhou LH, Zhao QY, Chen T, Wang CL (2020) The Arabidopsis kinase-associated protein phosphatase KAPP, interacting with protein kinases SnRK2.2/2.3/2.6, negatively regulates abscisic acid signaling. Plant Mol Biol 102:199–212

    Article  CAS  PubMed  Google Scholar 

  • Machida S, Yuan YA (2013) Crystal structure of Arabidopsis thaliana Dawdle forkhead-associated domain reveals a conserved phospho-threonine recognition cleft for dicer-like 1 binding. Mol Plant 6:1290–1300

    Article  CAS  PubMed  Google Scholar 

  • Mahajan A, Yuan C, Lee H, Chen ES, Wu PY, Tsai MD (2008) Structure and function of the phosphothreonine-specific FHA domain. Sci Signal. https://doi.org/10.1126/scisignal.151re12

    Article  PubMed  Google Scholar 

  • Manabe Y, Bressan RA, Wang T, Li F, Koiwa H, Sokolchik I, Li X, Maggio A (2008) The Arabidopsis kinase-associated protein phosphatase regulates adaptation to Na+ stress. Plant Physiol 146:612–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marin E, Nussaume L, Quesada A, Gonneau M, Sotta B, Hugueney P, Frey A, Marion-Poll A (1996) Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J 15:2331–2342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minnebo N, Görnemann J, O’Connell N, Van Dessel N, Derua R, Vermunt MW, Page R, Beullens M, Peti W, Van Eynde A et al (2013) NIPP1 maintains EZH2 phosphorylation and promoter occupancy at proliferation-related target genes. Nucleic Acids Res 41:842–854

    Article  CAS  PubMed  Google Scholar 

  • Morris ER, Chevalier D, Walker JC (2006) DAWDLE, a forkhead-associated domain gene, regulates multiple aspects of plant development. Plant Physiol 141:932–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Najdekrova L, Siroky J (2012) NBS1 plays a synergistic role with telomerase in the maintenance of telomeres in Arabidopsis thaliana. BMC Plant Biol 12:167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narayanan LA, Mukherjee D, Zhang S, Yu B, Chevalier D (2014) Mutational analyses of a fork head associated domain protein, DAWDLE, in Arabidopsis thaliana. Am J Plant Sci 05:2811–2822

    Article  Google Scholar 

  • Niederkorn M, Agarwal P, Starczynowski DT (2020) TIFA and TIFAB: FHA-domain proteins involved in inflammation, hematopoiesis, and disease. Exp Hematol 90:18–29

    Article  CAS  PubMed  Google Scholar 

  • O’Connell N, Nichols SR, Heroes E, Beullens M, Bollen M, Peti W, Page R (2012) The molecular basis for substrate specificity of the nuclear NIPP1:PP1 holoenzyme. Structure 20:1746–1756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park HY, Seok HY, Park BK, Kim SH, Goh CH, Lee BH, Lee CH, Moon YH (2008) Overexpression of Arabidopsis ZEP enhances tolerance to osmotic stress. Biochem Biophys Res Commun 375:80–85

    Article  CAS  PubMed  Google Scholar 

  • Park SJ, Choi SW, Kim GM, Møller C, Pai HS, Yang SW (2021) Light-stabilized FHA2 suppresses miRNA biogenesis through interactions with DCL1 and HYL1. Mol Plant 14:647–663

    Article  CAS  PubMed  Google Scholar 

  • Pouliot JJ, Robertson CA, Nash HA (2001) Pathways for repair of topoisomerase I covalent complexes in Saccharomyces cerevisiae. Genes Cells 6:677–687

    Article  CAS  PubMed  Google Scholar 

  • Pouliot JJ, Yao KC, Robertson CA, Nash HA (1999) Yeast gene for a Tyr-DNA phosphodiesterase that repairs topoisomerase I complexes. Science 286:552–555

    Article  CAS  PubMed  Google Scholar 

  • Qin Q, Wang W, Guo X, Yue J, Huang Y, Xu X, Li J, Hou S (2014) Arabidopsis DELLA protein degradation is controlled by a type-one protein phosphatase, TOPP4. PLoS Genet 10:e1004464

    Article  PubMed  PubMed Central  Google Scholar 

  • Römer S, Lübeck J, Kauder F, Steiger S, Adomat C, Sandmann G (2002) Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation. Metab Eng 4:263–272

    Article  PubMed  Google Scholar 

  • Schwarz N, Armbruster U, Iven T, Brückle L, Melzer M, Feussner I, Jahns P (2015) Tissue-specific accumulation and regulation of zeaxanthin epoxidase in Arabidopsis reflect the multiple functions of the enzyme in plastids. Plant Cell Physiol 56:346–357

    Article  CAS  PubMed  Google Scholar 

  • Seet BT, Dikic I, Zhou MM, Pawson T (2006) Reading protein modifications with interaction domains. Nat Rev Mol Cell Biol 7:473–483

    Article  CAS  PubMed  Google Scholar 

  • Shah K, Russinova E, Gadella TW Jr, Willemse J, De Vries SC (2002) The Arabidopsis kinase-associated protein phosphatase controls internalization of the somatic embryogenesis receptor kinase 1. Genes Dev 16:1707–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi FY, Liu ZY, Pang ZJ, Feng H (2021) The role of the FHA domain-containing protein family in pollen development of Brassica rapa L. Sci Hortic 288:110339

    Article  CAS  Google Scholar 

  • Shi FY, Liu ZY, Wang N, Zhao Y, Dong SY, Zou JQ, Feng H (2020) Identification of a male sterile gene Ms in Brassica rapa L. Mol Breed 40:61

    Article  CAS  Google Scholar 

  • Spivey VL, Molle V, Whalan RH, Rodgers A, Leiba J, Stach L, Walker KB, Smerdon SJ, Buxton RS (2011) Forkhead-associated (FHA) domain containing ABC transporter Rv1747 is positively regulated by Ser/Thr phosphorylation in Mycobacterium tuberculosis. The J Biol Chem 286:26198–26209

    Article  CAS  PubMed  Google Scholar 

  • Stone JM, Collinge MA, Smith RD, Horn MA, Walker JC (1994) Interaction of a protein phosphatase with an Arabidopsis serine-threonine receptor kinase. Science 266:793–795

    Article  CAS  PubMed  Google Scholar 

  • Stone JM, Trotochaud AE, Walker JC, Clark SE (1998) Control of meristem development by CLAVATA1 receptor kinase and kinase-associated protein phosphatase interactions. Plant Physiol 117:1217–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takemiya A, Ariyoshi C, Shimazaki K (2009) Identification and functional characterization of inhibitor-3, a regulatory subunit of protein phosphatase 1 in plants. Plant Physiol 150:144–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takemiya A, Yamauchi S, Yano T, Ariyoshi C, Shimazaki K (2013) Identification of a regulatory subunit of protein phosphatase 1 which mediates blue light signaling for stomatal opening. Plant Cell Physiol 54:24–35

    Article  CAS  PubMed  Google Scholar 

  • Tanuma N, Kim SE, Beullens M, Tsubaki Y, Mitsuhashi S, Nomura M, Kawamura T, Isono K, Koseki H, Sato M et al (2008) Nuclear inhibitor of protein phosphatase-1 (NIPP1) directs protein phosphatase-1 (PP1) to dephosphorylate the U2 small nuclear ribonucleoprotein particle (snRNP) component, spliceosome-associated protein 155 (Sap155). J Biol Chem 283:35805–35814

    Article  CAS  PubMed  Google Scholar 

  • Templeton GW, Nimick M, Morrice N, Campbell D, Goudreault M, Gingras AC, Takemiya A, Shimazaki K, Moorhead GB (2011) Identification and characterization of AtI-2, an Arabidopsis homologue of an ancient protein phosphatase 1 (PP1) regulatory subunit. Biochemical J 435:73–83

    Article  CAS  Google Scholar 

  • Thompson AJ, Jackson AC, Parker RA, Morpeth DR, Burbidge A, Taylor IB (2000) Abscisic acid biosynthesis in tomato: regulation of zeaxanthin epoxidase and 9-cis-epoxycarotenoid dioxygenase mRNAs by light/dark cycles, water stress and abscisic acid. Plant Mol Biol 42:833–845

    Article  CAS  PubMed  Google Scholar 

  • Tong Y, Tempel W, Wang H, Yamada K, Shen L, Senisterra GA, MacKenzie F, Chishti AH, Park HW (2010) Phosphorylation-independent dual-site binding of the FHA domain of KIF13 mediates phosphoinositide transport via centaurin alpha1. Proc Natl Acad Sci USA 107:20346–20351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torii KU (2000) Receptor kinase activation and signal transduction in plants: an emerging picture. Curr Opin Plant Biol 3:361–367

    Article  CAS  PubMed  Google Scholar 

  • Van Dessel N, Boens S, Lesage B, Winkler C, Görnemann J, Van Eynde A, Bollen M (2015) Protein phosphatase PP1-NIPP1 activates mesenchymal genes in HeLa cells. FEBS Lett 589:1314–1321

    Article  PubMed  Google Scholar 

  • Van Eynde A, Nuytten M, Dewerchin M, Schoonjans L, Keppens S, Beullens M, Moons L, Carmeliet P, Stalmans W, Bollen M (2004) The nuclear scaffold protein NIPP1 is essential for early embryonic development and cell proliferation. Mol Cell Biol 24:5863–5874

    Article  PubMed  PubMed Central  Google Scholar 

  • Vulsteke V, Beullens M, Boudrez A, Keppens S, Van Eynde A, Rider MH, Stalmans W, Bollen M (2004) Inhibition of spliceosome assembly by the cell cycle-regulated protein kinase MELK and involvement of splicing factor NIPP1. J Biol Chem 279:8642–8647

    Article  CAS  PubMed  Google Scholar 

  • Vulsteke V, Beullens M, Waelkens E, Stalmans W, Bollen M (1997) Properties and phosphorylation sites of baculovirus-expressed nuclear inhibitor of protein phosphatase-1 (NIPP-1). J Biol Chem 272:32972–32978

    Article  CAS  PubMed  Google Scholar 

  • Wakula P, Beullens M, Ceulemans H, Stalmans W, Bollen M (2003) Degeneracy and function of the ubiquitous RVXF motif that mediates binding to protein phosphatase-1. J Biol Chem 278:18817–18823

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Fang W, Han H, Sui N, Li B, Meng QW (2008) Overexpression of zeaxanthin epoxidase gene enhances the sensitivity of tomato PSII photoinhibition to high light and chilling stress. Physiol Plant 132:384–396

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Qin Q, Su M, Li N, Zhang J, Liu Y, Yan L, Hou S (2022) Type one protein phosphatase regulates fixed-carbon starvation-induced autophagy in arabidopsis. Plant Cell. https://doi.org/10.1093/plcell/koac251

    Article  PubMed  PubMed Central  Google Scholar 

  • Waterworth WM, Altun C, Armstrong SJ, Roberts N, Dean PJ, Young K, Weil CF, Bray CM, West CE (2007) NBS1 is involved in DNA repair and plays a synergistic role with ATM in mediating meiotic homologous recombination in plants. Plant J 52:41–52

    Article  CAS  PubMed  Google Scholar 

  • Weiling H, Xiaowen Y, Chunmei L, Jianping X (2013) Function and evolution of ubiquitous bacterial signaling adapter phosphopeptide recognition domain FHA. Cell Signal 25:660–665

    Article  PubMed  Google Scholar 

  • Williams RW, Wilson JM, Meyerowitz EM (1997) A possible role for kinase-associated protein phosphatase in the Arabidopsis CLAVATA1 signaling pathway. Proc Natl Acad Sci USA 94:10467–10472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkler C, De Munter S, Van Dessel N, Lesage B, Heroes E, Boens S, Beullens M, Van Eynde A, Bollen M (2015) The selective inhibition of protein phosphatase-1 results in mitotic catastrophe and impaired tumor growth. J Cell Sci 128:4526–4537

    CAS  PubMed  Google Scholar 

  • Winkler C, Rouget R, Wu D, Beullens M, Van Eynde A, Bollen M (2018) Overexpression of PP1-NIPP1 limits the capacity of cells to repair DNA double-strand breaks. J Cell Sci 131:214932

    Article  Google Scholar 

  • Xiong F, Ren JJ, Wang YY, Zhou Z, Qi HD, Otegui MS, Wang XL (2022) An Arabidopsis retention and splicing complex regulates root and embryo development through pre-mRNA splicing. Plant Physiol 190:621–639

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Lee H, Ishitani M, Zhu JK (2002) Regulation of osmotic stress-responsive gene expression by the LOS6/ABA1 locus in Arabidopsis. J Biol Chem 277:8588–8596

    Article  CAS  PubMed  Google Scholar 

  • Yaffe MB, Smerdon SJ (2001) PhosphoSerine/threonine binding domains: you can’t pSERious? Structure 9:R33-38

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Liu Y, Huang X, Li L, Hu Z, Zhang J, Qin Q, Yan L, He K, Wang Y (2019) An unreported NB-LRR protein SUT1 is required for the autoimmune response mediated by type one protein phosphatase 4 mutation (topp4-1) in Arabidopsis. Plant J 100:357–373

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Wang L, Chen C, Guo X, Lin C, Huang W, Chen L (2021) Genome-wide analysis of autophagy-related genes in Medicago truncatula highlights their roles in seed development and response to drought stress. Sci Rep 11:22933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang SW, Burgin AB Jr, Huizenga BN, Robertson CA, Yao KC, Nash HA (1996) A eukaryotic enzyme that can disjoin dead-end covalent complexes between DNA and type I topoisomerases. Proc Natl Acad Sci USA 93:11534–11539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu B, Bi L, Zheng B, Ji L, Chevalier D, Agarwal M, Ramachandran V, Li W, Lagrange T, Walker JC et al (2008) The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis. Proc Natl Acad Sci USA 105:10073–10078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue J, Qin Q, Meng S, Jing H, Gou X, Li J, Hou S (2016) TOPP4 Regulates the Stability of PHYTOCHROME INTERACTING FACTOR5 during Photomorphogenesis in Arabidopsis. Plant Physiol 170:1381–1397

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Qin Q, Nan X, Guo Z, Liu Y, Jadoon S, Chen Y, Zhao L, Yan L, Hou S (2020) Role of protein phosphatase 1 regulatory subunit 3 (PP1R3) in mediating abscisic acid response. Plant Physiol 184:1317–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Dou Y, Li S, Ren G, Chevalier D, Zhang C, Yu B (2018) DAWDLE interacts with DICER-LIKE proteins to mediate small RNA biogenesis. Plant Physiol 177:1142–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhou J, Lim CU (2006) The role of NBS1 in DNA double strand break repair, telomere stability, and cell cycle checkpoint control. Cell Res 16:45–54

    Article  PubMed  Google Scholar 

  • Zhang Z, Wang Y, Chang L, Zhang T, An J, Liu Y, Cao Y, Zhao X, Sha X, Hu T, Yang P (2016) MsZEP, a novel zeaxanthin epoxidase gene from alfalfa (Medicago sativa), confers drought and salt tolerance in transgenic tobacco. Plant Cell Rep 35:439–453

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Li S, Sheng J, Shen L, Yang Y, Yao B (2011) Identification of target ligands of CORYNE in Arabidopsis by phage display library. J Integr Plant Biol 53:281–288

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Petersen S, Tessarollo L, Nussenzweig A (2001) Targeted disruption of the Nijmegen breakage syndrome gene NBS1 leads to early embryonic lethality in mice. Curr Biol 11:105–109

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is funded by the Science-Technology Foundation for Young Scientists of Gansu Province, China (22JR5RA524) and the China Postdoctoral Science Foundation (2022M721435).

Funding

Funding was provided by Science-Technology Foundation for Young Scientists of Gansu Province, China (22JR5RA524) and the China Postdoctoral Science Foundation (2022M721435).

Author information

Authors and Affiliations

Authors

Contributions

QW designed and conceived the review, analyzed the literature, and drafted the manuscript.

Corresponding author

Correspondence to Qiuling Wang.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q. The role of forkhead-associated (FHA)-domain proteins in plant biology. Plant Mol Biol 111, 455–472 (2023). https://doi.org/10.1007/s11103-023-01338-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-023-01338-4

Keywords

Navigation