Skip to main content
Log in

Identification and characterization of the CONSTANS-like gene family in the short-day plant Chrysanthemum lavandulifolium

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The CONSTANS (CO) and CONSTANS-like (COL) genes play key roles in the photoperiodic flowering pathways, and studying their functions can elucidate the molecular mechanisms underlying flowering control in photoperiod-regulated plants. We identified eleven COL genes (ClCOL1ClCOL11) in Chrysanthemum lavandulifolium and divided them into three groups that are conserved among the flowering plants based on phylogenetic analysis. Most of the ClCOL genes are primarily expressed in the leaf and shoot apices, except for ClCOL6ClCOL9, which belong to Group II. The expression levels of ClCOL4ClCOL5 and ClCOL7ClCOL8 are up-regulated under inductive short-day (SD) conditions, whereas ClCOL6 is down-regulated under inductive SD conditions. The ClCOL genes exhibit four different diurnal rhythm expressions (Type I–Type IV). The Type I genes (ClCOL4ClCOL5) are highly transcribed under light. The Type II genes (ClCOL1ClCOL2, ClCOL10) display increased expression in darkness and are rapidly suppressed under light. Transcripts of ClCOL6ClCOL9 and ClCOL11, belonging to Type III, are abundant in the late light period or at the beginning of the dark period. ClCOL3 belongs to Type IV, with high expression in the early light period and dark period. The peak expression levels of ClCOL4ClCOL6 are decreased and postponed in the non-inductive night break (NB) and under long-day (LD) conditions, indicating that those genes may play an essential role in the flowering regulation of C. lavandulifolium. The overexpression of ClCOL5 promotes the flowering of Arabidopsis grown under LD conditions, suggesting that ClCOL5 may function as a flowering enhancer in C. lavandulifolium. This study will be useful not only for the study of the C. lavandulifolium photoperiod-dependent flowering process but also for the genetic manipulation of flowering time-related genes to change the flowering time in the chrysanthemum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AP1 :

APETALA1

CCA1:

CIRCADIAN CLOCK ASSOCIATED 1

CCT:

CO, CO-like and TOC1

CDFs:

CYCLING DOF FACTORs

CO :

CONSTANS

COL :

CONSTANS-like

COP1:

CONSTITUTIVE PHOTOMORPHOGENESIS 1

CRY:

CRYPTOCHROME

CTAB:

Cetyltrimethylammonium bromide

DBB:

Double B-box

FKF1:

FLAVIN-BINDING, KELCH REPEAT F-BOX 1

FT :

FLOWERING LOCUS T

GI:

GIGANTEA

Hd1 :

Heading date 1

Hd3a :

Heading date 3a

HOS1:

HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1

LD:

Long-day

LFY :

LEAFY

LHY:

LATE ELONGATED HYPOCOTYL

MTP:

Metal tolerance protein

NB:

Night break

PHYB:

PHYTOCHROME B

qRT-PCR:

Quantitative real-time RT-PCR

RACE:

Rapid amplification of cDNA ends

SAND:

SAND family protein

SD:

Short-day

SOC1 :

SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1

SPA1:

SUPPRESSOR OF PHYA 1

STH:

Salt Tolerance Homologs

STO:

Salt Tolerance-like protein

SUR2 :

SUPERROOT 2

Tm:

Melting temperatures

TUB2 :

Β-tubulin

WT:

Wild-type

ZT:

Zeitgeber time

References

  • Albani MC, Coupland G (2010) Chapter eleven-comparative analysis of flowering in annual and perennial plants. Curr Top Dev Biol 91:323–348

    Article  CAS  PubMed  Google Scholar 

  • Almada R, Cabrera N, Casaretto JA, Ruiz-Lara S, Villanueva EG (2009) VvCO and VvCOL1, two CONSTANS homologous genes, are regulated during flower induction and dormancy in grapevine buds. Plant Cell Rep 28:1193–1203

    Article  CAS  PubMed  Google Scholar 

  • Bohlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043

    Article  PubMed  Google Scholar 

  • Brambilla V, Fornara F (2013) Molecular control of flowering in response to day length in rice. J Integr Plant Biol 55:410–418

    Article  CAS  PubMed  Google Scholar 

  • Campoli C, Drosse B, Searle I, Coupland G, von Korff M (2012) Functional characterisation of HvCO1, the barley (Hordeum vulgare) flowering time ortholog of CONSTANS. Plant J 69:868–880

    Article  CAS  PubMed  Google Scholar 

  • Chang SJ, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Chen J, Chen JY, Wang JN, Kuang JF, Shan W, Lu WJ (2012) Molecular characterization and expression profiles of MaCOL1, a CONSTANS-like gene in banana fruit. Gene 496:110–117

    Article  CAS  PubMed  Google Scholar 

  • Cheng XF, Wang ZY (2005) Overexpression of COL9, a CONSTANS-LIKE gene, delays flowering by reducing expression of CO and FT in Arabidopsis thaliana. Plant J 43:758–768

    Article  CAS  PubMed  Google Scholar 

  • Chia TYP, Muller A, Jung C, Mutasa-Gottgens ES (2008) Sugar beet contains a large CONSTANS-LIKE gene family including a CO homologue that is independent of the early-bolting (B) gene locus. J Exp Bot 59:2735–2748

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Datta S, Hettiarachch GHCM, Deng XW, Holm M (2006) Arabidopsis CONSTANS-LIKE3 is a positive regulator of red light signaling and root growth. Plant Cell 18:70–84

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ding Y, Fu JX, Dai SL (2012) Characteristics of seed germination and regularities of growth and development of Chrysanthemum lavandulifolium in natural conditions. J Northeast For Univ 40:23–25

    Google Scholar 

  • Drabesova J, Chab D, Kolar J, Haskovcova K, Storchova H (2014) A dark-light transition triggers expression of the floral promoter CrFTL1 and downregulates CONSTANS-like genes in a short-day plant Chenopodium rubrum. J Exp Bot. doi:10.1093/jxb/eru1073

    PubMed Central  PubMed  Google Scholar 

  • Fornara F, Panigrahi K, Gissot L, Sauerbrunn N, Ruhl M, Jarillo JA, Coupland G (2009) Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Dev Cell 17:75–86

    Article  CAS  PubMed  Google Scholar 

  • Fu JX, Wang Y, Huang H, Zhang C, Dai SL (2013) Reference gene selection for RT-qPCR analysis of Chrysanthemum lavandulifolium during its flowering stages. Mol Breed 31:205–215

    Article  CAS  Google Scholar 

  • Fu JX, Wang LL, Wang Y, Yang LW, Yang YT, Dai SL (2014) Photoperiodic control of FT-like gene ClFT initiates flowering in Chrysanthemum lavandulifolium. Plant Physiol Bioch 74:230–238

    Article  CAS  Google Scholar 

  • Garner WW, Allard HA (1920) Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J Agric Res 18:553–606

    Google Scholar 

  • González-Schain ND, Díaz-Mendoza M, Żurczak M, Suárez-López P (2012) Potato CONSTANS is involved in photoperiodic tuberization in a graft-transmissible manner. Plant J 70:678–690

    Article  PubMed  Google Scholar 

  • Greenup A, Peacock WJ, Dennis ES, Trevaskis B (2009) The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals. Ann Bot 103:1165–1172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Griffiths S, Dunford RP, Coupland G, Laurie DA (2003) The evolution of CONSTANS-Like gene families in barley, rice, and Arabidopsis. Plant Physiol 131:1855–1867

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hassidim M, Harir Y, Yakir E, Kron I, Green RM (2009) Over-expression of CONSTANS-LIKE 5 can induce flowering in short-day grown Arabidopsis. Planta 230:481–491

    Article  CAS  PubMed  Google Scholar 

  • Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K (2003) Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422:719–722

    Article  CAS  PubMed  Google Scholar 

  • Hemming MN, Peacock WJ, Dennis ES, Trevaskis B (2008) Low-temperature and daylength cues are integrated to regulate FLOWERING LOCUS T in barley. Plant Physiol 147:355–366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Higuchi Y, Sumitomo K, Oda A, Shimizu H, Hisamatsu T (2012) Day light quality affects the night-break response in the short-day plant chrysanthemum, suggesting differential phytochrome-mediated regulation of flowering. J Plant Physiol 169:1789–1796

    Article  CAS  PubMed  Google Scholar 

  • Holefors A, Opseth L, Ree Rosnes AK, Ripel L, Snipen L, Fossdal CG, Olsen JE (2009) Identification of PaCOL1 and PaCOL2, two CONSTANS-like genes showing decreased transcript levels preceding short day induced growth cessation in Norway spruce. Plant Physiol Biochem 47:105–115

    Article  CAS  PubMed  Google Scholar 

  • Izawa T, Takahashi Y, Yano M (2003) Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis. Curr Opin Plant Biol 6:113–120

    Article  CAS  PubMed  Google Scholar 

  • Jang S, Marchal V, Panigrahi KCS, Wenkel S, Soppe W, Deng X-W, Valverde F, Coupland G (2008) Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. EMBO J 27:1277–1288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khanna R, Kronmiller B, Maszle DR, Coupland G, Holm M, Mizuno T, Wu S-H (2009) The Arabidopsis B-box zinc finger family. Plant Cell 21:3416–3420

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kikuchi R, Kawahigashi H, Oshima M, Ando T, Handa H (2012) The differential expression of HvCO9, a member of the CONSTANS-like gene family, contributes to the control of flowering under short-day conditions in barley. J Exp Bot 63:773–784

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Weigel D (2007) Move on up, it’s time for change-mobile signals controlling photoperiodic-dependent flowering. Genes Dev 21:2371–2384

    Article  CAS  PubMed  Google Scholar 

  • Laubinger S, Marchal V, Gentilhomme J, Wenkel S, Adrian J, Jang S, Kulajta C, Braun H, Coupland G, Hoecker U (2006) Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability. Development 133:3213–3222

    Article  CAS  PubMed  Google Scholar 

  • Lazaro A, Valverde F, Pineiro M, Jarillo JA (2012) The Arabidopsis E3 ubiquitin ligase HOS1 negatively regulates CONSTANS abundance in the photoperiodic control of flowering. Plant Cell 24:982–999

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ledger S, Strayer C, Ashton F, Kay SA, Putterill J (2001) Analysis of the function of two circadian-regulated CONSTANS-LIKE genes. Plant J 26:15–22

    Article  CAS  PubMed  Google Scholar 

  • Liu LJ, Zhang YC, Li QH, Sang Y, Mao J, Lian HL, Wang L, Yang HQ (2008) COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis. Plant Cell 20:292–306

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martin J, Storgaard M, Andersen CH, Nielsen KK (2004) Photoperiodic regulation of flowering in perennial ryegrass involving a CONSTANS-like homolog. Plant Mol Biol 56:159–169

    Article  CAS  PubMed  Google Scholar 

  • Nemoto Y, Kisaka M, Fuse T, Yano M, Ogihara Y (2003) Characterization and functional analysis of three wheat genes with homology to the CONSTANS flowering time gene in transgenic rice. Plant J 36:82–93

    Article  CAS  PubMed  Google Scholar 

  • Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showering similarities to zinc finger transcription factors. Cell 80:847–857

    Article  CAS  PubMed  Google Scholar 

  • Robert LS, Robson F, Sharpe A, Lydiate D, Coupland G (1998) Conserved structure and function of the Arabidopsis flowering time gene CONSTANS in Brassica napus. Plant Mol Biol 37:763–772

    Article  CAS  PubMed  Google Scholar 

  • Robson F, Costa MMR, Hepworth SR, Vizir I, Pineiro M, Reeves PH, Putterill J, Coupland G (2001) Functional importance of conserved domains in the Flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. Plant J 28:619–631

    Article  CAS  PubMed  Google Scholar 

  • Sawa M, Nusinow DA, Kay SA, Imaizumi T (2007) FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318:261–265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Song YH, Smith RW, To BJ, Millar AJ, Imaizumi T (2012) FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering. Science 336:1045–1049

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Song YH, Ito S, Imaizumi T (2013) Flowering time regulation: photoperiod-and temperature-sensing in leaves. Trends Plant Sci 18:575–583

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410:1116–1120

    Article  CAS  PubMed  Google Scholar 

  • Takase T, Kakikubo Y, Nakasone A, Nishiyama Y, Yasuhara M, Tokioka-Ono Y, Kiyosue T (2011) Characterization and transgenic study of CONSTANS-LIKE8 (COL8) gene in Arabidopsis thaliana: expression of 35S: COL8 delays flowering under long-day conditions. Plant Biotechnol 28:439–446

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303:1003–1006

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Han KT, Dai SL (2009) Construction of expression vector and transformation of chrysanthemum with maize Lc gene. Genomics Appl Biol 28:229–236

    CAS  Google Scholar 

  • Wang HG, Zhang ZL, Li HY, Zhao XY, Liu XM, Ortiz M, Lin CT, Liu B (2013) CONSTANS-LIKE 7 regulates branching and shade avoidance response in Arabidopsis. J Exp Bot 64:1017–1024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Y, Huang H, Ma YP, Fu JX, Wang LL, Dai SL (2014) Construction and de novo characterization of a transcriptome of Chrysanthemum lavandulifolium: analysis of gene expression patterns in floral bud emergence. Plant Cell Tiss Org Cult 114:297–309

    Article  Google Scholar 

  • Yang Y, Ma C, Xu Y, Wei Q, Imtiaz M, Lan H, Gao S, Cheng L, Wang M, Fei Z (2014) A zinc finger protein regulates flowering time and abiotic stress tolerance in Chrysanthemum by modulating gibberellin biosynthesis. Plant Celltpc 114:124867

    Google Scholar 

  • Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2483

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang LJ, Dai SL (2009) Research advance on germplasm resources of Chrysanthemum × morifolium. Chin Bull Bot 44:525–526

    Google Scholar 

  • Zhang JX, Wu KL, Tian LN, Zeng SJ, Duan J (2011) Cloning and characterization of a novel CONSTANS-like gene from Phalaenopsis hybrida. Acta Physiol Plant 33:409–417

    Article  CAS  Google Scholar 

  • Zhang Z, Ji R, Li H, Zhao T, Liu J, Lin C, Liu B (2014) CONSTANS-LIKE 7 (COL7) is involved in Phytochrome B (phyB) mediated light-quality regulation of auxin homeostasis. Mol Plant. doi:10.1093/mp/ssu1058

    Google Scholar 

  • Zuo ZC, Liu HT, Liu B, Liu XM, Lin CT (2011) Blue light-dependent interaction of CRY2 with SPA1 regulates COP1 activity and floral initiation in Arabidopsis. Curr Biol 21:841–847

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Beijing Natural Science Foundation (Grant Number 6132020) and the Fundamental Research Funds for the Central Universities (Grant Number BLYJ20133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silan Dai.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, J., Yang, L. & Dai, S. Identification and characterization of the CONSTANS-like gene family in the short-day plant Chrysanthemum lavandulifolium . Mol Genet Genomics 290, 1039–1054 (2015). https://doi.org/10.1007/s00438-014-0977-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-014-0977-3

Keywords

Navigation