Skip to main content
Log in

Seasonal variation in tsetse fly apparent density and Trypanosoma spp. infection rate and occurrence of drug-resistant trypanosomes in Lambwe, Kenya

  • Research
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Tsetse flies are major arthropod vectors of trypanosomes that cause debilitating African animal trypanosomiasis. The emergence of drug-resistant trypanosomes is a common problem in sub-Saharan Africa. This study aimed to identify tsetse flies’ seasonal variation in apparent densities and their infection rates and the occurrence of drug-resistant trypanosomes. Tsetse flies were collected from Lambwe, Kenya, during May and September 2021. Genomic DNA was extracted from them, and the ITS1 gene was amplified to detect Trypanosoma infection with subsequent species determination. Transporter genes DMT, E6M6, TbAT/P2, and TcoAde2 were targeted to detect polymorphisms associated with drug-resistance, using sequencing and comparison to drug-sensitive trypanosome species referenced in Genbank. A total of 498 tsetse flies and 29 non-tsetse flies were collected. The apparent density of flies was higher in wet season 6.2 fly per trap per density (FTD) than in the dry season 2.3 FTD (P = 0.001), with n = 386 and n = 141 flies caught in each season, respectively. Male tsetse flies (n = 311) were more numerous than females (n = 187) (P = 0.001). Non-tsetse flies included Tabanids and Stomoxys spp. Overall, Trypanosoma infection rate in tsetse was 5% (25/498) whereby Trypanosoma vivax was 4% (11/25), Trypanosoma congolense 36% (9/25), and Trypanosoma brucei 20% (5/25) (P = 0.186 for the distribution of the species), with infections being higher in females (P = 0.019) and during the wet season (P < 0.001). Numerous polymorphisms and insertions associated with drug resistance were detected in DMT and E6M6 genes in two T. congolense isolates while some isolates lacked these genes. T. brucei lacked TbAT/P2 genes. TcoAde2 sequences in three T. congolense isolates were related to those observed in trypanosomes from cattle blood in our previous study, supporting tsetse fly involvement in transmission in the region. We report Trypanosoma associated with trypanocidal drug-resistance in tsetse flies from Lambwe, Kenya. Female tsetse flies harbored more Trypanosoma infections than males. Tsetse transmission of trypanosomes is common in Lambwe. Risk of trypanosome infection would seem higher in the wet season, when tsetse flies and Trypanosoma infections are more prevalent than during the dry season. More efforts to control animal trypanosome vectors in the region are needed, with particular focus on wet seasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source Ivy

Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Sequence datasets used in this article can be accessed in Genbank.

References

  • Abubakar LU, Bulimo WD, Mulaa FJ, Osir EO (2006) Molecular characterization of a tsetse fly midgut proteolytic lectin that mediates differentiation of African trypanosomes. Insect Biochem Mol Biol 36:344–352

    Article  CAS  PubMed  Google Scholar 

  • Ahmed SK, Rahman AH, Hassan MA et al (2016) An atlas of tsetse and bovine trypanosomosis in Sudan. Parasit Vectors 9:1–8

    Article  Google Scholar 

  • Asfaw N, Hiruy B, Worku N, Massebo F (2022) Evaluating the efficacy of various traps in catching tsetse flies at Nech Sar and Maze National Parks, Southwestern Ethiopia: an implication for Trypanosoma vector control. PLoS Negl Trop Dis 16:1–10

    Article  Google Scholar 

  • Attardo G (2020) Tsetse flies nurse their young, and understanding this unusual strategy could help fight the disease they spread. Phys Org 18:1–6

    Google Scholar 

  • Awange JL, Ogalo L, Bae KH et al (2008) Falling Lake Victoria water levels: is climate a contributing factor? Clim Change 89:281–297

    Article  ADS  Google Scholar 

  • Baylis M, Nambiro C (1993) The responses of Glossina pallidipes and G. longipennis (Diptera: Glossinidae) to odour-baited traps and targets at Galana Ranch, south-eastern Kenya. Bull Entomol Res 83:145–151

    Article  Google Scholar 

  • Brightwell R, Dransfield R (2008) Odour attractants for tsetse: Glossina austeni, G. brevipalpis and G. swynnertoni. Med Vet Entomol 37:145–151

    Google Scholar 

  • Camberlin P, Wairoto JG (1997) Intraseasonal wind anomalies related to wet and dry spells during the “long” and “short” rainy seasons in Kenya. Theor Appl Climatol 58:57–69

    Article  ADS  Google Scholar 

  • Chitanga S, Marcotty T, Namangala B et al (2011) High prevalence of drug resistance in animal trypanosomes without a history of drug exposure. PLoS Negl Trop Dis 5:1454–1500

    Article  Google Scholar 

  • Daniel KM, Smyth AJ, Hayes P, Bromidge TJ, Gibson WC (1992) Sensitive detection of trypanosomes in tsetse flies by DNA amplification. Int J Parasitol 22:909–18

    Article  Google Scholar 

  • Dayo G, Bengaly Z, Messad S et al (2010) Prevalence and incidence of bovine trypanosomosis in an agro-pastoral area of southwestern Burkina Faso. Res Vet Sci 88:470–477

    Article  PubMed  Google Scholar 

  • Degneh E, Ashenafi H, Kassa T et al (2019) Trypanocidal drug resistance: a threat to animal health and production in Gidami district of Kellem Wollega Zone, Oromia Regional State, Western Ethiopia. Prev Vet Med 168:103–107

    Article  PubMed  Google Scholar 

  • Delespaux V, Geerts S, Brandt J et al (2002) Monitoring the correct use of isometamidium by farmers and veterinary assistants in Eastern Province of Zambia using the isometamidium-ELISA. Vet Parasitol 110:117–122

    Article  CAS  PubMed  Google Scholar 

  • Delespaux V, Geysen D, Majiwa PAO, Geerts S (2005) Identification of a genetic marker for isometamidium chloride resistance in Trypanosoma congolense. Int J Parasitol 35:235–243

    Article  CAS  PubMed  Google Scholar 

  • Delespaux V, Chitanga S, Geysen D et al (2006) SSCP analysis of the P2 purine transporter TcoAT1 gene of Trypanosoma congolense leads to a simple PCR-RFLP test allowing the rapid identification of diminazene resistant stocks. Acta Trop 100:96–102

    Article  CAS  PubMed  Google Scholar 

  • Delespaux V, Geysen D, Van den Bossche P, Geerts S (2008) Molecular tools for the rapid detection of drug resistance in animal trypanosomes. Trends Parasitol 24:236–242

    Article  CAS  PubMed  Google Scholar 

  • Desquesnes M, Dia ML (2004) Mechanical transmission of Trypanosoma vivax in cattle by the African tabanid Atylotus fuscipes. Vet Parasitol 119:9–19

    Article  PubMed  Google Scholar 

  • Desquesnes M, Biteau-Coroller F, Bouyer J et al (2009) Development of a mathematical model for mechanical transmission of trypanosomes and other pathogens of cattle transmitted by tabanids. Int J Parasitol 39:333–346

    Article  PubMed  Google Scholar 

  • Devisseré MH, Messinaé JP, Mooreé NJ et al (2010) A dynamic species distribution model of Glossina subgenus Morsitans: the identification of tsetse reservoirs and refugia. Ecosphere 1:1–21

    Article  Google Scholar 

  • Fineile P, Murray M, Barry JD, Morrison WI, Williams RO, HH and LR (1983) African animal trypanosomiasis; World Animal Review, 3rd edn. Fao 1:1–120

  • Gibson W, Backhouse T, Griffiths A (2002) The human serum resistance associated gene is ubiquitous and conserved in Trypanosoma brucei rhodesiense throughout East Africa. Infect Genet Evol 1:207–214

    Article  CAS  PubMed  Google Scholar 

  • Glover PE (1948) The epidemiology of trypanosomiasis in man and animals. R Soc Trop Med Hyigiene 41:23–30

    Google Scholar 

  • Hao Z, Kasumba I, Lehane MJ et al (2001) Tsetse immune responses and trypanosome transmission: implications for the development of tsetse-based strategies to reduce trypanosomiasis. Proc Natl Acad Sci U S A 98:12648–12653

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Hu C, Aksoy S (2006) Innate immune responses regulate trypanosome parasite infection of the tsetse fly Glossina morsitans morsitans. Mol Microbiol 60:1194–1204

    Article  CAS  PubMed  Google Scholar 

  • Ikenna E (2008) Animal trypanosomiasis in Africa : aetiology and epidomiology. Anim Res Int 5:811–815

    Google Scholar 

  • Koné N, N’goran EK, Sidibe I, Kombassere AW, Bouyer J (2011) Spatio-temporal distribution of tsetse and other biting flies in the Mouhoun River basin, Burkina Faso. Med Vet Entomol 25:156–68

  • Kulohoma BW, Wamwenje SAO, Wangwe II et al (2020) Prevalence of trypanosomes associated with drug resistance in Shimba Hills, Kwale County, Kenya. BMC Res Notes 13:1–6

    Article  Google Scholar 

  • Kumar S, Stecher G, Li M et al (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kyorku C, Brightwell R, Dransfield R (1990) Traps and odour baits for the tsetse fly, Glossina longipennis (Diptera: Glossinidae). Bull Entomol Res 80:405–415

    Article  Google Scholar 

  • Lai DH, Hashimi H, Lun ZR et al (2008) Adaptations of Trypanosoma brucei to gradual loss of kinetoplast DNA: Trypanosoma equiperdum and Trypanosoma evansi are petite mutants of T. brucei. Proc Natl Acad Sci U S A 105:1999–2004

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Lakew BT (2015) Review on drug resistant animal trypanosomes in Africa and overseas evaluation of medicinal plants for their pharmacologic effect. Artic J Basic Appl Sci 14:54–112

    Google Scholar 

  • Lutje V, Seixas J (2006) Chemotherapy of second-stage human African trypanosomiasis. Cochrane Database Syst Rev 5:5–10

    Google Scholar 

  • MacLeod A, Tweedie A, McLellan S, Hope M, Taylor S, Cooper A, Sweeney L, Turner CMTA (2005) Allelic segregation and independent assortment in T. brucei crosses: proof that the genetic system is Mendelian and involves meiosis. Mol Biochem Parasitol 143:12–19

    Article  CAS  PubMed  Google Scholar 

  • Magona JW, Walubengo J, Odiit M, Okedi LA (2005) Implications of the re-invasion of Southeast Uganda by Glossina pallidipes on the epidemiology of bovine trypanosomosis. Vet Parasitol 128:1–9

    Article  CAS  PubMed  Google Scholar 

  • Malele II, Ouma JO, Nyingilili HS et al (2007) Comparative performance of traps in catching tsetse flies ( Diptera : Glossinidae ) in Tanzania. Onderstepoort J Vet Res 83:1–7

    Google Scholar 

  • Mekonnen G, Mohammed EF, Kidane W et al (2018) Isometamidium chloride and homidium chloride fail to cure mice infected with Ethiopian Trypanosoma evansi type A and B. PLoS Negl Trop Dis 12:1–12

    Article  Google Scholar 

  • Mihok S, Carlson DA, Ndegwa PN (2007) Tsetse and other biting fly responses to Nzi traps baited with octenol, phenols and acetone. Med Vet Entomol 21:70–84

    Article  CAS  PubMed  Google Scholar 

  • Munday JC, Rojas KE, Eze AA et al (2013) International journal for parasitology : drugs and drug resistance functional expression of TcoAT1 reveals it to be a P1-type nucleoside transporter with no capacity for diminazene uptake. Int J Parasitol Drugs Drug Resist 3:69–76

    Article  PubMed Central  PubMed  Google Scholar 

  • Munday JC, Tagoe DNA, Eze AA et al (2015) Functional analysis of drug resistance-associated mutations in the Trypanosoma brucei adenosine transporter 1 (TbAT1) and the proposal of a structural model for the protein. Mol Microbiol 96:887–900

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ngari NN, Gamba DO, Olet PA et al (2020) Developing a national atlas to support the progressive control of tsetse-transmitted animal trypanosomosis in Kenya. Parasit Vectors 13:1–12

    Article  Google Scholar 

  • Njiru ZK, Constantine CC, Guya S et al (2005) The use of ITS1 rDNA PCR in detecting pathogenic African trypanosomes. Parasitol Res 95:186–192

    Article  CAS  PubMed  Google Scholar 

  • Nnko HJ, Ngonyoka A, Salekwa L et al (2017) Seasonal variation of tsetse fly species abundance and prevalence of trypanosomes in the Maasai Steppe, Tanzania. J Vector Ecol 42:24–33

    Article  PubMed  Google Scholar 

  • Oberle M, Balmer O, Brun R, Roditi I (2010) Bottlenecks and the maintenance of minor genotypes during the life cycle of Trypanosoma brucei. PLoS Pathog 6:1–8

    Article  Google Scholar 

  • Okello I, Mafie E, Eastwood G et al (2022a) Prevalence and associated risk factors of African animal trypanosomiasis in cattle in Lambwe, Kenya. J Parasitol Res 15:8–12

    Google Scholar 

  • Okello I, Mafie E, Eastwood G et al (2022b) African animal trypanosomiasis: a systematic review on prevalence, risk factors and drug resistance in sub-Saharan Africa. J Med Entomol 59:1099–1143

    Article  PubMed  Google Scholar 

  • Okello I, Mafie E, Nzalawahe J et al (2022c) Trypanosoma congolense resistant to trypanocidal drugs homidium and diminazene and their molecular characterization in Lambwe, Kenya. Acta Parasitol 18:5–15

    Google Scholar 

  • Ooi CP, Schuster S, Cren-Travaillé C et al (2016) The cyclical development of Trypanosoma vivax in the tsetse fly involves an asymmetric division. Front Cell Infect Microbiol 6:1–16

    Article  Google Scholar 

  • Peacock L, Ferris V, Bailey M, Gibson W (2007) Dynamics of infection and competition between two strains of Trypanosoma brucei brucei in the tsetse fly observed using fluorescent markers. Kinetoplastid Biol Dis 6:1–10

    Article  Google Scholar 

  • Peacock L, Ferris V, Bailey M, Gibson W (2012) The influence of sex and fly species on the development of trypanosomes in tsetse flies. PLoS Negl Trop Dis 6:1515–1520

    Article  Google Scholar 

  • Pollock JN (1982) Training manual for tsetse control personnel. Vol. 1: Tsetse biology, systematics and distribution, techniques. Fao 1:1–280

    Google Scholar 

  • Pyana Pati P, Van Reet N, Mumba Ngoyi D et al (2014) Melarsoprol sensitivity profile of Trypanosoma brucei gambiense isolates from cured and relapsed sleeping sickness patients from the Democratic Republic of the Congo. PLoS Negl Trop Dis 8:5–10

    Article  Google Scholar 

  • Rayaisse JB, Tirados I, Kaba D et al (2010) Prospects for the development of odour baits to control the tsetse flies Glossina tachinoides and G. palpalis s.l. PLoS Negl Trop Dis 4:11–19

    Article  Google Scholar 

  • Rocque LD, Bengaly ZD, Michel JF, Solano P, Sidibé IACD (1999) Importance des interfaces spatiales et temporelles entre les bovins et les glossines dans la transmission de la trypanosomose animale en Afrique de l’Ouest. Rev Elev Méd Vét Des Pays Trop 52:215–222

    Article  Google Scholar 

  • Rodrigues CMF, Garcia HA, Sheferaw D et al (2019) Genetic diversity of trypanosomes pathogenic to livestock in tsetse flies from the Nech Sar National Park in Ethiopia: a concern for tsetse suppressed area in Southern Rift Valley. Infect Genet Evol 69:38–47

    Article  PubMed  Google Scholar 

  • Salekwa LP, Nnko HJ, Ngonyoka A et al (2014) Relative abundance of tsetse fly species and their infection rates in simanjiro, Northern Tanzania. Livest Res Rural Dev 26:5–12

    Google Scholar 

  • Sheferaw D, Birhanu B, Asrade B et al (2016) Bovine trypanosomosis and Glossina distribution in selected areas of southern part of Rift Valley, Ethiopia. Acta Trop 154:145–148

    Article  PubMed  Google Scholar 

  • Simwango M, Ngonyoka A, Nnko HJ et al (2017) Molecular prevalence of trypanosome infections in cattle and tsetse flies in the Maasai Steppe, northern Tanzania. Parasit Vectors 10:1–11

    Article  Google Scholar 

  • Solano P, Salou E, Rayaisse JB et al (2015) Do tsetse flies only feed on blood? Infect Genet Evol 36:184–189

    Article  PubMed  Google Scholar 

  • Tihon E, Imamura H, Van den Broeck F et al (2017) Genomic analysis of isometamidium chloride resistance in Trypanosoma congolense. Int J Parasitol Drugs Drug Resist 7:350–361

    Article  PubMed Central  PubMed  Google Scholar 

  • Torr SJ, Hall DR, Phelps RJ, Vale GA (1997) Methods for dispensing odour attractants for tsetse flies (Diptera: Glossinidae). Bull Entomol Res 87:299–311

    Article  Google Scholar 

  • Van Den Bossche P, Doran M, Connor RJ (2000) An analysis of trypanocidal drug use in the Eastern Province of Zambia. Acta Trop 75:247–258

    Article  PubMed  Google Scholar 

  • Waiswa C, Picozzi K, Katunguka-rwakishaya E, Olaho-mukani W (2006) Glossina fuscipes fuscipes in the trypanosomiasis endemic areas of south eastern Uganda : apparent density, trypanosome infection rates and host feeding preferences. Acta Trop 99:23–29

    Article  CAS  PubMed  Google Scholar 

  • Wamwiri FN, Changasi RE (2016) Tsetse flies Glossina as vectors of human African trypanosomiasis : a review. Biomed Res Int 8:2–5

    Google Scholar 

  • Wangwe II, Wamwenje SA, Mirieri C et al (2019) Modelling appropriate use of trypanocides to restrict wide-spread multi-drug resistance during chemotherapy of animal African trypanosomiasis. Parasitology 12:774–780

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the support of the Kenya Tsetse and Trypanosomiasis Eradication Council (KENTTEC) for their help in carrying out the field activities for this study and thank Dr. Serap Aksoy for providing positive control for Trypansoma DNA.

Funding

Ivy Okello received funding from Partnership for Skills in Applied Sciences, Engineering and Technology-Regional Scholarship Innovative Fund (PASET-RSIF) to pursue this study. GE is supported by the USDA National Institute of Food and Agriculture, Hatch Project VA-160131.

Author information

Authors and Affiliations

Authors

Contributions

IO conceptualized the study, acquired the PASET-RSIF scholarship funding, developed the methodology, did the investigation, performed analysis, and did writing of original draft; IO, GE, EM, and JN did the review and editing; GE, EM, and JN provided supervision.

Corresponding author

Correspondence to Ivy Okello.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Section Editor: Helge Kampen

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okello, I., Nzalawahe, J., Mafie, E. et al. Seasonal variation in tsetse fly apparent density and Trypanosoma spp. infection rate and occurrence of drug-resistant trypanosomes in Lambwe, Kenya. Parasitol Res 123, 46 (2024). https://doi.org/10.1007/s00436-023-08081-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00436-023-08081-1

Keywords

Navigation